
MVME166

Single Board Computer

Installation Guide

(MVME166IG/D2)

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or
from the use of the information obtained therein. Motorola reserves the right to revise
this document and to make changes from time to time in the content hereof without
obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the
prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed to
mean that Motorola intends to announce such Motorola products, programming, or
services in your country.

Restricted Right Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

This manual provides general board level hardware description, hardware preparation
and installation instructions, debugger general information, and using the debugger;
for the MVME166 Single Board Computer.

This manual is intended for anyone who wants to provide OEM systems, supply
additional capability to an existing compatible system, or work in a lab environment
for experimental purposes.

A basic knowledge of computers, and digital logic is assumed.

After using this manual, you may wish to become familiar with the publications listed
in the Related Documentation section in Chapter 1 of this manual. This installation guide
is based on these other documents.

The computer programs stored in the Read Only Memory of this device contain
material copyrighted by Motorola Inc., first published 1990, and may be used only
under a license such as the License for Computer Programs (Article 14) contained in
Motorola’s Terms and Conditions of Sale, Rev. 1/79.

!
WARNING

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in
accordance with the documentation for this product, may
cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A
Computing Device pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable protection
against such interference when operated in a commercial
environment. Operation of this equipment in a residential
area is likely to cause interference in which case the user, at
the user’s own expense, will be required to take whatever
measures necessary to correct the interference.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.

Delta Series, VMEmodule, and VMEsystem are trademarks of Motorola, Inc.

Timekeeper and Zeropower are trademarks of Thompson Components.

All other products mentioned in this document are trademarks or registered
trademarks of their respective holders.

©Copyright Motorola 1993, 1994

All Rights Reserved

Printed in the United States of America

April 1994

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of
operation, service, and repair of this equipment. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the equipment. Motorola, Inc.
assumes no liability for the customer’s failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which
Motorola is aware. You, as the user of the product, should follow these warnings and
all other safety precautions necessary for the safe operation of the equipment in your
operating environment.

Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to
an electrical ground. The equipment is supplied with a three-conductor AC power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter, with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at the
power outlet. The power jack and mating plug of the power cable meet International
Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in the presence of flammable gases or fumes. Operation
of any electrical equipment in such an environment constitutes a definite safety hazard.

Keep Away From Live Circuits.

Operating personnel must not remove equipment covers. Only Factory Authorized
Service Personnel or other qualified maintenance personnel may remove equipment
covers for internal subassembly or component replacement or any internal adjustment.
Do not replace components with power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid injuries,
always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Use Caution When Exposing or Handling the CRT.

Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass
fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of
the equipment. Handling of the CRT should be done only by qualified maintenance
personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.

Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification of the equipment. Contact your local
Motorola representative for service and repair to ensure that safety features are
maintained.

Dangerous Procedure Warnings.

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed. You
should also employ all other safety precautions which you deem necessary for the
operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are present in
this equipment. Use extreme caution when handling,
testing, and adjusting.

vii

Contents

CHAPTER 1 BOARD LEVEL HARDWARE DESCRIPTION

Introduction ...1-1
Overview...1-1
Related Documentation ..1-2
Requirements..1-5
Features ...1-5
Specifications ..1-6
Manual Terminology ...1-6

Block Diagram ...1-8
Functional Description ...1-9

Front Panel Switches and Indicators...1-9
Data Bus Structure ...1-10
MC68040 MPU ...1-10
Flash Memory and Download EPROM..1-10
SRAM...1-11
Onboard DRAM...1-12
Battery Backed Up RAM and Clock..1-13
VMEbus Interface ..1-13
VME Subsystem Bus (VSB) Interface ..1-13
I/O Interfaces ...1-13

Serial Port Interface ..1-13
MC68230 Parallel Interface/Timer...1-14
Parallel Port Interface...1-15
Ethernet Interface..1-15
SCSI Interface ..1-16
SCSI Termination..1-16

Local Resources ..1-16
Programmable Tick Timers ...1-17
Watchdog Timer ...1-17
Software-Programmable Hardware Interrupts..................................1-17
Local Bus Timeout ..1-17

Connectors ..1-17
Memory Maps ...1-18

Local Bus Memory Map..1-18
Normal Address Range ...1-18

VMEbus Memory Map..1-22

viii

VMEbus Accesses to the Local Bus.. 1-22
VMEbus Short I/O Memory Map..1-22

VSB Memory Map ...1-22

CHAPTER 2 HARDWARE PREPARATION AND INSTALLATION

Introduction ...2-1
Unpacking Instructions..2-1
Hardware Preparation ...2-1

SCSI Terminator Enable Header J2 ...2-2
General Purpose Readable Jumpers on Header J3 ...2-4
System Controller Header J6..2-4
SRAM Backup Power Source Select Header J7 ...2-5

Installation Instructions ...2-6
MVME166 Module Installation ...2-6
System Considerations ...2-8

CHAPTER 3 DEBUGGER GENERAL INFORMATION

Overview of M68000 Firmware ..3-1
Description of 166Bug ..3-1
166Bug Implementation...3-3
Installation and Startup ...3-3
BOOTBUG ...3-7

166BBug Implementation ...3-7
Execute User Program ..3-8
Setup System Parameters ...3-8

Autoboot ..3-9
ROMboot..3-10
Network Boot ..3-10
Restarting the System...3-11

Reset ..3-11
Abort..3-12
Break..3-12
SYSFAIL* Assertion/Negation..3-12
MPU Clock Speed Calculation ..3-13

Memory Requirements ..3-13
Terminal Input/Output Control...3-14
Disk I/O Support..3-15

Blocks Versus Sectors ..3-15

ix

Device Probe Function ... 3-16
Disk I/O via 166Bug Commands ... 3-16

IOI (Input/Output Inquiry) ... 3-16
IOP (Physical I/O to Disk) ... 3-16
IOT (I/O Teach) ... 3-16
IOC (I/O Control).. 3-17
BO (Bootstrap Operating System) ... 3-17
BH (Bootstrap and Halt) ... 3-17

Disk I/O via 166Bug System Calls ... 3-17
Default 166Bug Controller and Device Parameters 3-18
Disk I/O Error Codes ... 3-19

Network I/O Support ... 3-19
Intel 82596 LAN Coprocessor Ethernet Driver... 3-19
UDP/IP Protocol Modules .. 3-19
RARP/ARP Protocol Modules.. 3-20
BOOTP Protocol Module ... 3-20
TFTP Protocol Module.. 3-20
Network Boot Control Module ... 3-20
Network I/O Error Codes ... 3-20

Multiprocessor Support .. 3-21
Multiprocessor Control Register (MPCR) Method 3-21
GCSR Method.. 3-23

Diagnostic Facilities ... 3-23

CHAPTER 4 USING THE 166Bug DEBUGGER

Entering Debugger Command Lines .. 4-1
Syntactic Variables .. 4-2

Expression as a Parameter.. 4-3
Address as a Parameter .. 4-4
Address Formats.. 4-4
Offset Registers .. 4-6

Port Numbers .. 4-8
Entering and Debugging Programs... 4-9
Calling System Utilities from User Programs.. 4-9
Preserving the Debugger Operating Environment ... 4-9

166Bug Vector Table and Workspace.. 4-10
Hardware Functions ... 4-10
Exception Vectors Used by 166Bug .. 4-11

Using 166Bug Target Vector Table.. 4-12
Creating a New Vector Table... 4-13

x

166Bug Generalized Exception Handler ...4-15
Floating Point Support...4-17

Single Precision Real ...4-18
Double Precision Real ...4-18
Extended Precision Real ...4-18
Packed Decimal Real...4-19
Scientific Notation ...4-19

The 166Bug Debugger Command Set..4-20

APPENDIX A CONFIGURE AND ENVIRONMENT COMMANDS

Configure Board Information Block..A-1
Set Environment to Bug/Operating System..A-2

APPENDIX B DISK/TAPE CONTROLLER DATA

Disk/Tape Controller Modules Supported.. B-1
Disk/Tape Controller Default Configurations .. B-2
IOT Command Parameters for Supported Floppy Types.................................... B-5

APPENDIX C NETWORK CONTROLLER DATA

Network Controller Modules Supported...C-1

xi

List of Figures

FIGURES

Figure 1-1. MVME166 Block Diagram..1-8
Figure 2-1. MVME166 Switches, Headers, Connectors, Fuses, and LEDs......2-3

xii

xiii

List of Tables

TABLES

Table 1-1. MVME166 Specifications..1-6
Table 1-2. Local Bus Memory Map ...1-19
Table 1-3. Local I/O Devices Memory Map ..1-20
Table 4-1. Debugger Address Parameter Formats..4-5
Table 4-2. Exception Vectors Used by 166Bug...4-11
Table 4-3. Debugger Commands...4-20
Table A-1. ENV Command Parameters ..A-3

xiv

MVME166IG/D21-1

1BOARD LEVEL
HARDWARE DESCRIPTION

Introduction
This chapter describes the board level hardware features of the MVME166
Single Board Computers. The chapter is organized with a board level
overview and features list in this introduction, followed by a more detailed
hardware functional description. Front panel switches and indicators are
included in the detailed hardware functional description. The chapter closes
with some general memory maps.

All programmable registers in the MVME166 that reside in ASICs are covered
in the MVME166/MVME167/MVME187 Single Board Computers Programmer’s
Reference Guide.

Overview

The MVME166 is based on the MC68040 microprocessor. The MVME166 has
4/8/16/32/64/128/256 MB of ECC-protected DRAM, 1 MB of Flash memory
with download EPROM, 128KB of static RAM (with battery backup), 8KB of
static RAM and time of day clock (with battery backup), Ethernet transceiver
interface, four serial ports with TTL interface, four tick timers, watchdog timer,
SCSI bus interface with DMA, Centronics printer port,
A16/A24/A32/D8/D16/D32/D64 VMEbus master/slave interface, VMEbus
system controller, and a VSB interface.

The I/O connection for the MVME166 is provided by two high density
shielded front panel I/O connectors. The SCSI bus is connected through a 68
pin connector. The printer, four serial ports and Ethernet interface are
connected through a 100 pin connector. The MVME712-10 transition module
and the MVME712-06/07/09 I/O distribution board set were designed to
support the MVME166 boards. These transition boards provide configuration
headers, serial port drivers and industry standard connectors for the I/O
devices.

The VMEbus interface is provided by an ASIC called the VMEchip2. The
VMEchip2 includes two tick timers, a watchdog timer, programmable map
decoders for the master and slave interfaces, and a VMEbus to/from local bus
DMA controller, a VMEbus to/from local bus non-DMA programmed access
interface, a VMEbus interrupter, a VMEbus system controller, a VMEbus
interrupt handler, and a VMEbus requester.

Board Level Hardware Description

1-2 MVME166 Single Board Computer Installation Guide

1

Processor-to-VMEbus transfers can be D8, D16, or D32. VMEchip2 DMA
transfers to the VMEbus, however, can be D16, D32, D16/BLT, D32/BLT, or
D64/MBLT.

The VSBchip2 provides the VSB interface on the MVME166. The VSBchip2
includes programmable map decoders for the master and slave interfaces, a
VSB master interface, a VSB slave interface, a VSB interrupter, a VSB interrupt
handler, a VSB serial requester, a VSB serial arbiter, and a VSB parallel
requester. The VSB is connected to the P2 connector rows A and C on the
MVME166.

The PCCchip2 ASIC provides two tick timers and the interface to the LAN
chip, SCSI chip, serial port chip, printer port, BBRAM, and download EPROM
for Flash memory.

The MCECC memory controller ASIC provides the programmable interface
for the ECC-protected DRAM mezzanine board.

Related Documentation

The MVME166 does not ship with all of the documentation that is available for
the product. The MVME166 instead ships with a start-up installation guide
(the document you are presently reading) that includes all the information
necessary to begin working with these products: installation instructions,
jumper configuration information, memory maps, debugger/monitor
commands, and any other information needed for start-up of the board. The
installation guide is MVME166IG/D for the MVME166.

The following publications are applicable to the MVME166 and may provide
additional helpful information. They may be purchased by contacting your
local Motorola sales office. Non-Motorola documents may be purchased from
the sources listed.

Document Title
Motorola

Publication Number

MVME166 Single Board Computer User’s Manual MVME166

MVME166 Single Board Computer Support Information SIMVME166

MVME167Bug Debugging Package User’s Manual MVME167BUG

Debugging Package for Motorola 68K CISC CPUs User’s
Manual

68KBUG

Introduction

MVME166IG/D2 1-3

1

Notes The SIMVME166 manual contains: the connector
interconnect signal information, parts lists, and the
schematics; for the MVME166.

Although not shown in the above list, each Motorola
Computer Group manual publication number is suffixed
with characters which represent the revision level of the
document, such as "/D2" (the second revision of a manual);
a supplement bears the same number as a manual but has a
suffix such as "/D2A1" (the first supplement to the second
edition of the manual).

These manuals may also be ordered in documentation sets as follows:

68-MVME166SET for use with the MVME166.

MVME166/D
MVME167BUG/D
68KBUG/D
SBCSCSI/D
MVME187PG/D
SIMVME166/D

Document Title
Motorola

Publication Number

Single Board Computers SCSI Software User’s Manual SBCSCSI

MVME166/MVME167/MVME187 Single Board
Computers Programmer’s Reference Guide

MVME187PG

MVME712-06/07/09 I/O Distribution Board Set User’s
Manual

MVME712IO

MVME712-10 Transition Module User’s Manual MVME712-10

M68040 Microprocessors User’s Manual M68040UM

Board Level Hardware Description

1-4 MVME166 Single Board Computer Installation Guide

1

To further assist your development effort, Motorola has collected user’s
manuals for each of the peripheral controllers used on the MVME166 from the
suppliers. This bundle, which can be ordered as part number 68-1X7DS,
includes manuals for the following:

NCR 53C710 SCSI Controller Data Manual and Programmer’s Guide
Intel i82596 Ethernet Controller User’s Manual
Cirrus Logic CD2401 Serial Controller User’s Manual
SGS-Thompson MK48T08 NVRAM/TOD Clock Data Sheet

The following publications are also available from the sources indicated.

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std 1014-1987, The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY
10017 (VMEbus Specification). (This is also Microprocessor System Bus for 1 to 4
Byte Data, IEC 821 BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3,rue de Varembé, Geneva, Switzerland.)

IEEE Standard for Multiplexed High-Performance Bus Structure: VSB, ANSI/IEEE
Std 1096-1988, The Institute of Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY 10017 (VSB Specification). (This is also Parallel
Sub-system Bus of the IEC 821 VMEbus, IEC 822 VSB, Bureau Central de la
Commission Electrotechnique Internationale; 3,rue de Varembé, Geneva,
Switzerland.)

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document X3.131-198X,
Revision 10c; Global Engineering Documents, P.O. Box 19539, Irvine, CA
92714.

CL-CD2400/2401 Four-Channel Multi-Protocol Communications Controller Data
Sheet, order number 542400-003; Cirrus Logic, Inc., 3100 West Warren Ave.,
Fremont, CA 94538.

82596CA Local Area Network Coprocessor Data Sheet, order number 290218; and
82596 User’s Manual, order number 296853; Intel Corporation, Literature Sales,
P.O. Box 58130, Santa Clara, CA 95052-8130.

NCR 53C710 SCSI I/O Processor Data Manual, order number NCR53C710DM;
and NCR 53C710 SCSI I/O Processor Programmer’s Guide, order number
NCR53C710PG; NCR Corporation, Microelectronics Products Division,
Colorado Springs, CO.

MK48T08(B) Timekeeper TM and 8Kx8 Zeropower TM RAM data sheet in Static
RAMs Databook, order number DBSRAM71; SGS-THOMPSON
Microelectronics Group; North & South American Marketing Headquarters,
1000 East Bell Road, Phoenix, AZ 85022-2699.

i28F020 Flash Memory Data Sheet, order number 290245; Intel Literature Sales,
P.O. Box 7641, Mt. Prospect, IL 60056-7641.

Introduction

MVME166IG/D2 1-5

1

Requirements

These boards are designed to conform to the requirements of the following
documents:
❏ VMEbus Specification (IEEE 1014-87)
❏ EIA-232-D Serial Interface Specification, EIA
❏ SCSI Specification, ANSI
❏ VSB Specification (IEEE 1096-1988)

Features

Features of the MVME166 are listed below.
❏ MC68040 Microprocessor
❏ 4/8/16/32/64/128/256MB of 32-bit DRAM with ECC protection
❏ 1 MB of Flash memory and a download EPROM
❏ 128KB SRAM (with battery backup)
❏ Status LEDs for FAIL, STAT, RUN, SCON, LAN, RPWR, SCSI, VME, TPWR and VSB
❏ 8K by 8 RAM and time of day clock with battery backup
❏ RESET and ABORT switches
❏ Four 32-bit tick timers for periodic interrupts
❏ Watchdog timer
❏ Eight software interrupts
❏ I/O

– SCSI Bus interface with DMA
– Four serial ports with TTL buffers
– Centronics printer port
– Ethernet transceiver interface with DMA

❏ VMEbus interface
– VMEbus system controller functions
– VMEbus to local bus interface (A24/A32,

D8/D16/D32 (D8/D16/D32/D64BLT) (BLT = Block Transfer))
– Local bus to VMEbus interface (A16/A24/A32, D8/D16/D32)
– VMEbus interrupter
– VMEbus interrupt handler
– Global CSR for interprocessor communications
– DMA for fast local memory - VMEbus transfers (A16/A24/A32,

D16/D32 (D16/D32/D64BLT))
❏ VSB interface

– Local bus to VSB interface (A16/A24/A32, D8/D16/D32)
– VSB to local bus interface (A16/A24/A32, D8/D16/D32)
– Control and Status Register sets (Board CSRs accessible from both

local bus and VSB; local CSRs accessible from local bus)
(Includes Global CSR for IPC (General Purpose Registers 1 and 2))

– Local bus interrupter
– VSB interrupter and VSB interrupt handler
– Bidirectional write posting - local bus to VSB and VSB to local bus
– EVSB compatible

Board Level Hardware Description

1-6 MVME166 Single Board Computer Installation Guide

1

Specifications

General specifications for the MVME166 are listed in Table 1-1.

Manual Terminology

Throughout this manual, a convention is used which precedes data and
address parameters by a character identifying the numeric format as follows:

For example, "12" is the decimal number twelve, and "$12" is the decimal
number eighteen.

Unless otherwise specified, all address references are in hexadecimal.

An asterisk (*) following the signal name for signals which are level significant
denotes that the signal is true or valid when the signal is low.

Table 1-1. MVME166 Specifications

Characteristics Specifications

Power requirements
(excluding external LAN
transceiver)
(at 33 MHz with 32 MB
ECC memory)

+5 Vdc (± 5%), 5.0 A (typical), 6.5 A (max.)
(includes transition modules)

+12 Vdc (± 5%), 100 mA (max.) (1.0 A
(max.) with offboard LAN transceiver)

-12 Vdc (± 5%), 100 mA (max.)

Operating temperature 0° to 55° C at point of entry of forced air
(approximately 490 LFM)

Storage temperature -40° to +85° C

Relative humidity 5% to 90% (non-condensing)

Physical dimensions
PC board with mezzanine

module only
Height
Depth
Thickness

PC boards with connectors
and front panel
Height
Depth
Thickness

Double-high VMEboard

9.187 inches (233.35 mm)
6.299 inches (160.00 mm)
0.662 inches (16.77 mm)

10.309 inches (261.85 mm)
7.4 inches (188 mm)
0.80 inches (20.32 mm)

$ dollar specifies a hexadecimal character

% percent specifies a binary number

& ampersand specifies a decimal number

Introduction

MVME166IG/D2 1-7

1

An asterisk (*) following the signal name for signals which are edge significant
denotes that the actions initiated by that signal occur on high to low transition.

In this manual, assertion and negation are used to specify forcing a signal to a
particular state. In particular, assertion and assert refer to a signal that is active
or true; negation and negate indicate a signal that is inactive or false. These
terms are used independently of the voltage level (high or low) that they
represent.

Data and address sizes are defined as follows:

❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the least
significant.

❏ A two-byte is 16 bits, numbered 0 through 15, with bit 0 being the least
significant. For the MVME166 and other CISC modules, this is called a
word.

❏ A four-byte is 32 bits, numbered 0 through 31, with bit 0 being the least
significant. For the MVME166 and other CISC modules, this is called a
longword.

The terms control bit and status bit are used extensively in this document. The
term control bit is used to describe a bit in a register that can be set and cleared
under software control. The term true is used to indicate that a bit is in the
state that enables the function it controls. The term false is used to indicate that
the bit is in the state that disables the function it controls. In all tables, the
terms 0 and 1 are used to describe the actual value that should be written to
the bit, or the value that it yields when read. The term status bit is used to
describe a bit in a register that reflects a specific condition. The status bit can
be read by software to determine operational or exception conditions.

Board Level Hardware Description

1-8 MVME166 Single Board Computer Installation Guide

1

Block Diagram
Figure 1-1 is a general block diagram of the MVME166.

Figure 1-1. MVME166 Block Diagram

PRINTER
PORT

CD2401
SCC

SERIAL IO

128KB
STATIC

RAM

53C710
SCSI

DRAM FLASH

MK48T08
BBRAM

& CLOCK

VSBchip2

MC68040
82596CA

LAN
ETHERNET

PCCchip2

VSBVMEbus

VMEchip2

bd078 9304

DOWNLOAD
EPROM

Functional Description

MVME166IG/D2 1-9

1

Functional Description
This section contains a functional description of the major blocks on the
MVME166 Single Board Computers.

Front Panel Switches and Indicators
There are switches and LEDs on the front panel of the MVME166. The
switches are RESET and ABORT. The RESET switch resets all onboard devices
and drives SYSRESET* if the board is system controller. The RESET switch
may be disabled by software.
When enabled by software, the ABORT switch generates an interrupt at a user-
programmable level. It is normally used to abort program execution and
return to the debugger.
There are ten LEDs on the MVME166 front panel: FAIL, STAT, RUN, SCON,
LAN, RPWR, SCSI, VME, TPWR and VSB.
The red FAIL LED (part of DS1) lights when the BRDFAIL signal line is active.
The MC68040 status lines are decoded, on the MVME166, to drive the yellow
STAT (status) LED (part of DS1). In this case, a halt condition from the
processor lights the LED.
The green RUN LED (part of DS2) lights when the local bus TIP* signal line is
low. This indicates one of the local bus masters is executing a local bus cycle.
The green SCON LED (part of DS2) lights when the VMEchip2 in the
MVME166 is the VMEbus system controller.
The green LAN LED (part of DS3) lights when the LAN chip is local bus
master.
The MVME166 supplies +5V, +12V, and -12V power to the transition board
through fuses. There is one fuse for each voltage. The green RPWR (remote
power) LED (part of DS3) lights when all three voltages are available to the
transition board interface.
The green SCSI LED (part of DS4) lights when the SCSI chip is local bus master.
The green VME LED (part of DS4) lights when the board is using the VMEbus
(VMEbus AS* is asserted by the VMEchip2) or when the board is accessed by
the VMEbus (VMEchip2 is the local bus master).
The MVME166 supplies +5V to the SCSI bus for terminator power through a
fuse. The green TPWR (terminator power) LED (part of DS5) lights when
TERMPWR is available to the SCSI bus. SCSI bus TERMPWR may be supplied
by other devices on the SCSI bus.
The green VSB LED (part of DS5) lights when the MVME166 is using the VSB
(VSB PAS* is asserted by the VSBchip2) or when the MVME166 is accessed by
the VSB (VSBchip2 is the local bus master).

Board Level Hardware Description

1-10 MVME166 Single Board Computer Installation Guide

1

Data Bus Structure

The local data bus on the MVME166 is a 32-bit synchronous bus that is based
on the MC68040 bus, and supports burst transfers and snooping. The various
local bus master and slave devices use the local bus to communicate. The local
bus is arbitrated by priority type arbiter and the priority of the local bus
masters from highest to lowest is: 82596CA LAN, CD2401 serial (through the
PCCchip2), 53C710 SCSI, VSB, VMEbus, and MPU. In the general case, any
master can access any slave; however, not all combinations pass the common
sense test. Refer to the MVME166/MVME167/MVME187 Single Board
Computers Programmer’s Reference Guide and to the user’s guide for each device
to determine its port size, data bus connection, and any restrictions that apply
when accessing the device.

MC68040 MPU

The MC68040 processor is used on the MVME166. The MC68040 has on-chip
instruction and data caches and a floating point processor. Refer to the
M68040 user’s manual for more information.

Flash Memory and Download EPROM

The MVME166 includes four 28F020 Flash memory devices and a download
EPROM. These parts replace the four EPROM sockets used on the
MVME167/187. The Flash parts are programmable on the MVME166 board
and the programming code is provided in the download EPROM. The Flash
devices provide 1 MB of ROM at address $FF800000-$FF8FFFFF. The
download EPROM provides 128 KB of ROM at $FFF80000-$FFF9FFFF. The
download EPROM is mapped to local bus address 0 following a local bus reset.
This allows the MC68040 to access the stack pointer and execution address
following a reset. The download EPROM appears at 0 until the DR0 bit is
cleared in the PCCchip2 chip. The Flash devices are controlled by the
VMEchip2 and the download EPROM is controlled by the PCCchip2. The PC0
bit in the MC68230 PI/T chip must be low to enable writes to Flash.

The EPROM contains the BootBug product (166BBug). Because Flash memory
can be electronically erased, the EPROM firmware is a subset of the regular
debugger product. It contains enough functionality from the debugger to
permit downloading of object code (via VMEbus, serial port, SCSI bus, or the
network) and reprogramming of the Flash memory.

A jumper on the MVME166 (J3, pins 7 and 8) controls the operation of the
BootBug. If the jumper is in place, the BootBug (which always executes at
power-up and reset) passes execution to the full debugger contained in Flash
memory. If the jumper is removed, execution continues (with diminished
functionality) in the BootBug.

Functional Description

MVME166IG/D2 1-11

1

Before you perform any SCSI, VMEbus, or Ethernet I/O with the MVME166,
it may be necessary to define some parameters (e.g., SCSI ID, Ethernet address,
VMEbus mapping). For details on configuring the MVME166, refer to the
setup command description in Chapter 3 in this manual, and in the
MVME167Bug Debugging Package User’s Manual.

SRAM

The boards include 128KB of 32-bit wide static RAM with onboard battery
backup that supports 8-, 16-, and 32-bit wide accesses. The SRAM allows the
debugger to operate and limited diagnostics to be executed without the
DRAM mezzanine. The SRAM is controlled by the VMEchip2, and the access
time is programmable. The boards are populated with 100 ns SRAMs.

The SRAM is also battery backed up on the MVME166. The battery backup
function is provided by a Dallas DS1210S. The DS1210S supports primary and
secondary power sources. When the main board power fails, the DS1210S
selects the source with the highest voltage. If one source should fail, the
DS1210S switches to the redundant source. Each time the board is powered,
the DS1210S checks power sources and if the voltage of the backup sources is
less than two volts, the second memory cycle is blocked. This allows software
to provide an early warning to avoid data loss. Because the DS1210S may
block the second access, the software should do at least two accesses before
relying on the data.

The MVME166 provides jumpers that allow either power source of the
DS1210S to be connected to the VMEbus +5 V STDBY pin or one cell of the
onboard battery. For example, the primary system backup source may be a
battery connected to the VMEbus +5 V STDBY pin and the secondary source
may be the onboard battery. If the system source should fail or the board is
removed from the chassis, the onboard battery takes over.

Caution

For proper operation of the SRAM, some jumper
combination must be installed on the Backup Power Source
Select Header. If one of the jumpers is used to select the
battery, the battery must be installed on the MVME166. The
SRAM may malfunction if inputs to the DS1210S are left
unconnected.

The onboard power source is a RAYOVAC FB1225 battery which has two
BR1225 type lithium cells and is socketed for easy removal and replacement.
A small capacitor is provided to allow the battery to be quickly replaced
without data loss. The lifetime of the battery is very dependent on the ambient
temperature of the board and the power-on duty cycle. The lithium battery
supplied on the MVME166 should provide at least two years of backup time

Board Level Hardware Description

1-12 MVME166 Single Board Computer Installation Guide

1

with the board powered off and the board at 40° C. If the power-on duty cycle
is 50% (the board is powered on half of the time), the battery lifetime is four
years. At lower ambient temperatures the backup time is greatly extended
and may approach the shelf life of the battery. When a board is stored, the
battery should be disconnected to prolong battery life. This is especially
important at high ambient temperatures. The MVME166 is shipped with the
batteries disconnected.

The power leads from the battery are exposed on the solder side of the board,
therefore the board should not be placed on a conductive surface or stored in
a conductive bag unless the battery is removed.

Caution

Lithium batteries incorporate inflammable materials such
as lithium and organic solvents. If lithium batteries are
mistreated or handled incorrectly, they may burst open and
ignite, possibly resulting in injury and/or fire. When
dealing with lithium batteries, carefully follow the
precautions listed below in order to prevent accidents.

❏ Do not short circuit.

❏ Do not disassemble, deform, or apply excessive pressure.

❏ Do not heat or incinerate.

❏ Do not apply solder directly.

❏ Do not use different models, or new and old batteries together.

❏ Do not charge.

❏ Always check proper polarity.

To remove the battery from the module, carefully pull the battery from the
socket.

Before installing a new battery, ensure that the battery pins are clean. Note the
battery polarity and press the battery into the socket. When the battery is in
the socket, no soldering is required.

Onboard DRAM

The MVME166 onboard DRAM is located on a mezzanine board. The
mezzanine boards are available in different sizes and with ECC protection.
Mezzanine board sizes are 4, 8, 16, 32, 64, or 128MB, and two mezzanine
boards may be stacked to provide 256MB of onboard RAM. The main board
and a single mezzanine board together take one slot. The stacked
configuration requires two VMEboard slots. The DRAM is four-way
interleaved to efficiently support cache burst cycles.

Functional Description

MVME166IG/D2 1-13

1

The DRAM map decoder can be programmed to accommodate different base
address(es) and sizes of mezzanine boards. The onboard DRAM is disabled
by a local bus reset and must be programmed before the DRAM can be
accessed. Refer to the MCECC in the MVME166/MVME167/MVME187 Single
Board Computers Programmer’s Reference Guide for detailed programming
information. Most DRAM devices require some number of access cycles
before the DRAMs are fully operational. Normally this requirement is met by
the onboard refresh circuitry and normal DRAM installation. However,
software should insure a minimum of 10 initialization cycles are performed to
each bank of RAM.

Battery Backed Up RAM and Clock
The MK48T08 RAM and clock chip is used on the MVME166. This chip
provides a time of day clock, oscillator, crystal, power fail detection, memory
write protection, 8KB of RAM, and a battery in one 28-pin package. The clock
provides seconds, minutes, hours, day, date, month, and year in BCD 24-hour
format. Corrections for 28-, 29- (leap year), and 30-day months are
automatically made. No interrupts are generated by the clock. The MK48T08
is an 8 bit device; however, the interface provided by the PCCchip2 supports
8-, 16-, and 32-bit accesses to the MK48T08. Refer to the MK48T08 data sheet
for detailed programming information.

VMEbus Interface
The local bus to VMEbus interface, the VMEbus to local bus interface, and the
local-VMEbus DMA controller functions on the MVME166 are provided by
the VMEchip2. The VMEchip2 can also provide the VMEbus system controller
functions.

VME Subsystem Bus (VSB) Interface
The local bus to VSB interface and the VSB to local bus interface are provided
by the VSBchip2, only on the MVME166 board. The VSB uses the P2 connector
of the MVME166.

I/O Interfaces
The MVME166 provides onboard I/O for many system applications. The I/O
functions include serial ports, printer port, Ethernet transceiver interface, and
SCSI mass storage interface.

Serial Port Interface

The CD2401 serial controller chip (SCC) is used to implement the four serial
ports. The serial ports support the standard baud rates (110 to 38.4K baud).
The four serial ports on the MVME166 are functionally the same. All serial
ports are full function asynchronous or synchronous ports. They can operate

Board Level Hardware Description

1-14 MVME166 Single Board Computer Installation Guide

1

at synchronous bit rates up to 64 k bits per second. They use RXD, CTS, DCD,
TXD, RTS, DTR, and DSR. They also interface to the synchronous clock signal
lines. Additional control signals are provided for each serial port by the
MC68230. These include local loopback control, self test control, and ring
indicator. The ring indicator signal can be programmed to generate a local bus
interrupt. Refer to the MC68230 section for additional information. Note that
the usable functionality of the serial ports depends on the transition module
used.

All four serial ports on the MVME166 use a TTL interface to the transition
board. This allows the interface specific drivers to be located on the transition
board. This allows more flexibility in configuring the serial ports for different
interfaces like EIA-232-D or V.35. An external I/O transition module such as
the MVME712-10 should be used to provide configuration headers, interface
drivers, and industry-standard connectors.

The interface provided by the PCCchip2 allows the 16-bit CD2401 to appear at
contiguous addresses; however, accesses to the CD2401 must be 8 or 16 bits.
32-bit accesses are not permitted. Refer to the CD2401 data sheet for detailed
programming information.

The CD2401 supports DMA operations to local memory. Because the CD2401
does not support a retry operation necessary to break VMEbus or VSB dual
port lockup conditions, the CD2401 DMA controllers should not be
programmed to access the VMEbus or VSB. The hardware does not restrict the
CD2401 to onboard DRAM.

MC68230 Parallel Interface/Timer

The MVME166 provides an MC68230 parallel interface/timer (PI/T) chip.
When the MVME166 is used with the MVME712-10 transition module or the
MVME712-06/07/09 I/O distribution board set, the MC68230 is used to
provide additional control lines for the serial ports. These include local
loopback, self test, and ring indicator. The ring indicator signals can be
programmed to generate local bus interrupts. Refer to the MVME712-10
transition module manual for more information.

The base address of the MC68230 is $FFF45E00, and because it is an 8-bit
device it appears only at odd addresses. Space for the MC68230 was created
by dividing the area occupied by redundant copies of the CD2401 registers
into eight segments. The CD2401 is still addressed at $FFF45000 to $FFF451FF.
Addresses $FFF45200 to $FFF45BFF are reserved, and if accessed on an
MVME166 cause a local bus timeout error, if the local bus timer is enabled.
The address range from $FFF45C00 to $FFF45DFF always returns a local bus
timeout error if the local bus timer is enabled. The CD2401 appears
redundantly from $FFF45200 to $FFF45FFF on the MVME167/187.

Functional Description

MVME166IG/D2 1-15

1

The presence of the MC68230 can be determined by reading address
$FFF45C00. If a timeout error occurs, then the board is an MVME166 and and
the MC68230 is present. If a timeout does not occur, then the board is an
MVME167/187 and the MC68230 is not present. The local bus timeout timer
in the VMEchip2 must be enabled for this test.

The MC68230 may be used for general purpose I/O when the MVME166 is not
used with the MVME712 family of transition modules. Because the outputs
are unbuffered and unprotected, these signals should be used with caution.
The port A signal lines PA<7..0> are connected to the front panel connector J9.
The port A signal lines can be programmed as inputs or outputs. The port B
signal lines PB<3..0> are connected to the port H signal lines H<4..1> and the
front panel connector J9. This allows these four lines to be inputs or outputs
or receive interrupts. The port B signal line PB<7> is also connected to the front
panel connector J9. When used with the MVME712 family of transition
modules, the PB<7> signal line is used to read the configuration of the serial
ports. Timer interrupts from the MC68230 are not supported on the
MVME166. The MC68230 is connected to a 10 MHz clock. The PC0 bit in the
MC68230 PI/T chip must be low to enable writes to Flash memory.

Parallel Port Interface

The PCCchip2 provides an 8-bit bidirectional parallel port. All eight bits of the
port must be either inputs or outputs (no individual selection). In addition to
the 8 bits of data, there are two control pins and five status pins. Each of the
status pins can generate an interrupt to the MPU in any of the following
programmable conditions: high level, low level, high-to-low transition, or
low-to-high transition. This port may be used as a Centronics-compatible
parallel printer port or as a general parallel I/O port.

When used as a parallel printer port, the five status pins function as: Printer
Acknowledge (ACK), Printer Fault (FAULT*), Printer Busy (BSY), Printer
Select (SELECT), and Printer Paper Error (PE); while the control pins act as
Printer Strobe (STROBE*), and Input Prime (INP*).

The PCCchip2 provides an auto-strobe feature similar to that of the MVME147
PCC. In auto-strobe mode, after a write to the Printer Data Register, the
PCCchip2 automatically asserts the STROBE* pin for a selected time specified
by the Printer Fast Strobe control bit. In manual mode, the Printer Strobe
control bit directly controls the state of the STROBE* pin.

Ethernet Interface

The 82596CA is used to implement the Ethernet transceiver interface. The
82596CA accesses local RAM using DMA operations to perform its normal
functions. Because the 82596CA has small internal buffers and the VMEbus
has an undefined latency period, buffer overrun may occur if the DMA is
programmed to access the VMEbus. Therefore, the 82596CA should not be
programmed to access the VMEbus or VSB.

Board Level Hardware Description

1-16 MVME166 Single Board Computer Installation Guide

1

Every MVME166 is assigned an Ethernet Station Address. The address is
$08003E2XXXXX where XXXXX is the unique 5-nibble number assigned to the
board (i.e., every MVME166 has a different value for XXXXX).

Each module has an Ethernet Station Address displayed on a label attached to
the VMEbus P2 connector. In addition, the six bytes including the Ethernet
address are stored in the configuration area of the BBRAM. That is,
08003E2XXXXX is stored in the BBRAM. At an address of $FFFC1F2C, the
upper four bytes (08003E2X) can be read. At an address of $FFFC1F30, the
lower two bytes (XXXX) can be read. The MVME166 debugger has the
capability to retrieve or set the Ethernet address. So does the MVME166
BootBug.

If the data in the BBRAM is lost, the user should use the number on the
VMEbus P2 connector label to restore it.

The Ethernet transceiver interface is located on the MVME166 main module,
and the industry standard connector is located on the MVME712X transition
module.

Support functions for the 82596CA are provided by the PCCchip2. Refer to the
82596CA user’s guide for detailed programming information.

SCSI Interface

The MVME166 provides for mass storage subsystems through the industry-
standard SCSI bus. These subsystems may include hard and floppy disk
drives, streaming tape drives, and other mass storage devices. The SCSI
interface is implemented using the NCR 53C710 SCSI I/O controller.

Support functions for the 53C710 are provided by the PCCchip2. Refer to the
53C710 user’s guide for detailed programming information.

SCSI Termination

The individual configuring the system must ensure that the SCSI bus is
properly terminated at both ends. On the MVME166, the SCSI bus termination
is provided on the main board. The terminators are enabled/disabled by a
jumper. If the SCSI bus ends at the MVME166, the SCSI terminators must be
enabled by installing the jumper. Refer to the jumper configuration tables in
Chapter 2.

Local Resources
The MVME166 includes many resources for the local processor. These include
tick timers, software programmable hardware interrupts, watchdog timer,
and local bus timeout.

Functional Description

MVME166IG/D2 1-17

1

Programmable Tick Timers

Four 32-bit programmable tick timers with 1 µs resolution are provided, two
in the VMEchip2 and two in the PCCchip2. The tick timers can be
programmed to generate periodic interrupts to the processor.

Watchdog Timer

A watchdog timer function is provided in the VMEchip2. When the watchdog
timer is enabled, it must be reset by software within the programmed time or
it times out. The watchdog timer can be programmed to generate a SYSRESET
signal, local reset signal, or board fail signal if it times out.

Software-Programmable Hardware Interrupts

Eight software-programmable hardware interrupts are provided by the
VMEchip2. These interrupts allow software to create a hardware interrupt.

Local Bus Timeout

The MVME166 provides a timeout function for the local bus. When the timer
is enabled and a local bus access times out, a Transfer Error Acknowledge
(TEA) signal is sent to the local bus master. The timeout value is selectable by
software for 8 µsec, 64 µsec, 256 µsec, or infinite. The local bus timer does not
operate during VMEbus or VSB bound cycles. VMEbus bound cycles are
timed by the VMEbus access timer and the VMEbus global timer. VSB bound
cycles are timed by the VSB access timer, the VSB transfer timer, and if its serial
arbiter is enabled, by the VSB arbitration timer.

Connectors

The MVME166 has two 96-position DIN connectors: P1 and P2. P1 rows A, B,
C, and P2 row B provide the VMEbus interconnection. P2 rows A and C, on
the MVME166, provide the connection to the VSB. The MVME166 has a 20-pin
connector mounted behind the front panel. When the MVME166 board is
enclosed in a chassis and the front panel is not visible, this connector allows
the reset, abort and LED functions to be extended to the control panel of the
system, where they are visible. The MVME166 has a 68-pin mini D ribbon
shielded connector for the SCSI bus interface. The MVME166 has a 100-pin
mini D ribbon shielded connector for the serial ports, Ethernet, and printer.

Board Level Hardware Description

1-18 MVME166 Single Board Computer Installation Guide

1

Memory Maps
There are two points of view for memory maps: 1) the mapping of all resources
as viewed by local bus masters (local bus memory map), 2) the mapping of
onboard resources as viewed by externa masters (VMEbus memory map or
VSB memory map).

Local Bus Memory Map

The local bus memory map is split into different address spaces by the transfer
type (TT) signals. The local resources respond to the normal access and
interrupt acknowledge codes.

Normal Address Range

The memory map of devices that respond to the normal address range is
shown in the following tables. The normal address range is defined by the
Transfer Type (TT) signals on the local bus. On the MVME166, Transfer Types
0, 1, and 2 define the normal address range.

Table 1-2 is the entire map from $00000000 to $FFFFFFFF. Many areas of the
map are user-programmable, and suggested uses are shown in the table. The
cache inhibit function is programmable in the MMUs. The onboard I/O space
must be marked cache inhibit and serialized in its page table.

Table 1-3 further defines the map for the local I/O devices.

Memory Maps

MVME166IG/D2 1-19

1

NOTES:

1. There is 1MB of FLASH in this 4MB map area. Download
EPROM on the MVME166 appears at $00000000 - ROMSIZE
following a local bus reset. The Download EPROM appears
at 0 until the DR0 bit is cleared in the PCCchip2. The DR0 bit
is located at address $FFF42000 bit 15. The EPROM must be
disabled at 0 before the DRAM is enabled. The VMEchip2,
VSBchip2, and DRAM map decoders are disabled by a local
bus reset.

2. This area is user-programmable. The suggested use is shown
in the table. The DRAM decoder is programmed in the
MCECC chip, and the local-to-VMEbus decoders are
programmed in the VMEchip2. The local-to-VSB decoders
are programmed in the VSBchip2.

3. Size is approximate.

4. Cache inhibit depends on devices in area mapped.

5. This area is not decoded. If these locations are accessed and
the local bus timer is enabled, the cycle times out and is
terminated by a TEA signal.

Table 1-2. Local Bus Memory Map

Address Range Devices Accessed Port Size Size
Software

Cache
Inhibit

Notes

$00000000 - DRAMSIZE User Programmable

(Onboard DRAM)

D32 DRAMSIZE N 1, 2

DRAMSIZE - $FF7FFFFF User Programmable

(VMEbus or VSB)

D32/D16 3GB ? 3, 4

$FF800000 - $FF8FFFFF FLASH D32 1MB N 1

$FFC00000 - $FFDFFFFF reserved -- 2MB -- 5

$FFE00000 - $FFE1FFFF SRAM D32 128KB N --

$FFE20000 - $FFEFFFFF SRAM (repeated) D32 896KB N --

$FFF00000 - $FFFEFFFF Local I/O Devices

(Refer to next table)

D32-D8 1MB Y 3

$FFFF0000 - $FFFFFFFF User Programmable

(VMEbus A16)

D32/D16 64KB ? 2, 4

Board Level Hardware Description

1-20 MVME166 Single Board Computer Installation Guide

1

The following table focuses on the Local I/O Devices portion of the local bus
Main Memory Map.

NOTES:

1. For a complete description of the register bits, refer to the
MVME166/MVME167/MVME187 Single Board Computers
Programmer’s Reference Guide or to the data sheet for the
specific chip.

Table 1-3. Local I/O Devices Memory Map

Address Range Devices Accessed Port Size Size Notes

$FFF00000 - $FFF3FFFF reserved -- 256KB 5

$FFF40000 - $FFF400FF VMEchip2 (LCSR) D32 256B 1,4

$FFF40100 - $FFF401FF VMEchip2 (GCSR) D32-D8 256B 1,4

$FFF40200 - $FFF40FFF reserved -- 3.5KB 5,7

$FFF41000 - $FFF41FFF VSBchip2 D32-D8 4KB 1,10

$FFF42000 - $FFF42FFF PCCchip2 D32-D8 4KB 1

$FFF43000 - $FFF430FF MCECC #1 D8 256B 1

$FFF43100 - $FFF431FF MCECC #2 D8 256B 1

$FFF43200 - $FFF43FFF MCECCs (repeated) -- 3.5KB 1,7

$FFF44000 - $FFF44FFF reserved -- 4KB 5

$FFF45000 - $FFF451FF CD2401 (Serial Comm. Cont.) D16-D8 512B 1,9

$FFF45200 - $FFF45DFF reserved -- 3KB 7,9

$FFF45E00 - $FFF45FFF MC68230 -- 512B 1,9

$FFF46000 - $FFF46FFF 82596CA (LAN) D32 4KB 1,8

$FFF47000 - $FFF47FFF 53C710 (SCSI) D32/D8 4KB 1

$FFF48000 - $FFF4FFFF reserved -- 32KB 5

$FFF50000 - $FFF6FFFF reserved -- 128KB 5

$FFF70000 - $FFF76FFF reserved -- 28KB 6

$FFF77000 - $FFF77FFF reserved -- 4KB 2

$FFF78000 - $FFF7EFFF reserved -- 28KB 6

$FFF7F000 - $FFF7FFFF reserved -- 4KB 2

$FFF80000 - $FFF9FFFF Download EPROM -- 128KB 11

$FFFA0000 - $FFFBFFFF reserved -- 128KB 5

$FFFC0000 - $FFFCFFFF MK48T08 (BBRAM, TOD Clock) D32-D8 64KB 1

$FFFD0000 - $FFFDFFFF reserved -- 64KB 5

$FFFE0000 - $FFFEFFFF reserved -- 64KB 2

Memory Maps

MVME166IG/D2 1-21

1

2. On the MVME166 this area does not return an acknowledge
signal. If the local bus timer on the MVME166 is enabled, the
access times out and is terminated by a TEA signal.

On the MVME187 this area is used.

3. Byte reads should be used to read the interrupt vector. These
locations do not respond when an interrupt is not pending. If
the local bus timer is enabled, the access times out and is
terminated by a TEA signal.

4. Writes to the LCSR in the VMEchip2 must be 32 bits. LCSR
writes of 8 or 16 bits terminate with a TEA signal. Writes to
the GCSR may be 8, 16 or 32 bits. Reads to the LCSR and
GCSR may be 8, 16 or 32 bits.

5. This area does not return an acknowledge signal. If the local
bus timer is enabled, the access times out and is terminated by
a TEA signal.

6. This area does return an acknowledge signal.

7. Size is approximate.

8. Port commands to the 82596CA must be written as two 16-bit
writes: upper word first and lower word second.

9. The MC68230 is included only on the MVME166. The area
from $FFF45200 to $FFF45DFF does not return an
acknowledge on the MVME166. If the local bus timer is
enabled, the access times out and is terminated by a TEA
signal.

10. The VSBchip2 is included only on the MVME166.

11. The Download EPROM is only on the MVME166.

Board Level Hardware Description

1-22 MVME166 Single Board Computer Installation Guide

1

VMEbus Memory Map

This section describes the mapping of local resources as viewed by VMEbus
masters. Default addresses for the slave, master, and GCSR address decoders
are provided by the ENV command. Refer to Appendix A.

VMEbus Accesses to the Local Bus

The VMEchip2 includes a user-programmable map decoder for the VMEbus
to local bus interface. The map decoder allows you to program the starting
and ending address and the modifiers the MVME166 responds to.

VMEbus Short I/O Memory Map

The VMEchip2 includes a user-programmable map decoder for the GCSR.
The GCSR map decoder allows you to program the starting address of the
GCSR in the VMEbus short I/O space.

VSB Memory Map

This section describes the mapping of local resources as viewed by VSB
masters. The VSBchip2, on the MVME166, includes a user-programmable
map decoder for the VSB to local bus interface. This map decoder allows VSB
masters access to devices on the local bus. Default addresses for the slave,
master, and address decoders are provided by the ENV command. Refer to
Appendix A.

MVME166IG/D22-1

2HARDWARE PREPARATION
AND INSTALLATION

Introduction
This chapter provides unpacking instructions, hardware preparation, and
installation instructions for the MVME166. Hardware preparation and
installation for the MVME712 series transition modules is described in a
separate manual. Refer to the Related Documentation section in Chapter 1.

Unpacking Instructions

Note

If the shipping carton is damaged upon receipt, request
carrier’s agent be present during unpacking and inspection
of equipment.

Unpack equipment from shipping carton. Refer to packing list and verify that
all items are present. Save packing material for storing and reshipping of
equipment.

Caution

Avoid touching areas of integrated circuitry; static discharge
can damage circuits.

Hardware Preparation
To select the desired configuration and ensure proper operation of the
MVME166, certain option modifications may be necessary before installation.
The MVME166 provides software control for most of these options. Some
options can not be done in software, so are done by jumpers on headers. Most
other modifications are done by setting bits in control registers after the
MVME166 has been installed in a system. (The MVME166 registers are
described in the MVME166/MVME167/MVME187 Single Board Computers
Programmer’s Reference Guide as listed in Related Documentation in Chapter 1.)

Hardware Preparation and Installation

2-2 MVME166 Single Board Computer Installation Guide

2
Figure 2-1 illustrates the placement of the switches, jumper headers,
connectors, and LED indicators on the MVME166. The MVME166 has been
factory tested and is shipped with the factory jumper settings described in the
following sections. The MVME166 operates with its required and factory-
installed Debug Monitor, MVME166Bug (166Bug), with these factory jumper
settings. Settings can be changed for the following headers:

❏ SCSI terminator selection (J2)

❏ General purpose readable register (J3)

❏ System controller selection (J6)

❏ SRAM backup power source selection (J7)

SCSI Terminator Enable Header J2

The MVME166 provides terminators for the SCSI bus. The SCSI terminators
are enabled/disabled by jumpers on header J2. The SCSI terminators may be
configured as follows.

J2

1

Onboard SCSI Bus Terminator Enabled
(Factory Configuration)

2

J2

1

Onboard SCSI Bus Terminator Disabled

2

Hardware Preparation

MVME166IG/D2 2-3

2

Figure 2-1. MVME166 Switches, Headers, Connectors, Fuses, and LEDs

S
1

S
2

P
1

A
1

B
1

C
1

A
32

B
32

C
32

1
381 9404

MVME
166 LGA

P
R

IM
A

R
Y

 S
ID

E

P
2

A
32

B
32

C
32

A
1

B
1

C
1

DS4

DS3

DS2

DS1

1
2

J8

S
C

S
I

STATFAIL

RUN SCON

LAN RPWR

SCSI VME

ABORT

RESET

3433
6867

21
3635

DS5

J9
49

5099
100

1
2

51
22

F
1

F
3

F
4

J3
J6

2
16

1

1
26

F
2

I/O

2

15

1

5

J7

J2

M
E

Z
Z

A
N

IN
E

 B
O

A
R

D

TPWR VSB

Hardware Preparation and Installation

2-4 MVME166 Single Board Computer Installation Guide

2 General Purpose Readable Jumpers on Header J3

Each MVME166 may be configured with readable jumpers. These jumpers can
be read as a register (at $FFF40088) in the VMEchip2 LCSR. The bit values are
read as a one when the jumper is off, and as a zero when the jumper is on.

System Controller Header J6

The MVME166 can operate as VMEbus system controller. The system
controller function is enabled/disabled by jumpers on header J6. When the
MVME166 is functioning as system controller, the SCON LED is turned on.
The VMEchip2 can be configured as a system controller as follows.

15

GPIO0

GPIO1

GPIO2

GPIO6

GPIO3

GPIO4

GPIO5

1 2

16GPIO7

All Zeros

7 8

J3

IN = Normal Debugger
OUT = BootBug

(Factory Configuration)

System Controller

J6

1

2

Not System Controller

(Factory Configuration)

J6

1

2

Hardware Preparation

MVME166IG/D2 2-5

2SRAM Backup Power Source Select Header J7

Header J7 is used to select the power source used to backup the SRAM on the
MVME166.

Caution Do not remove all jumpers from J7. This may disable the
SRAM.
If the battery is removed, jumpers must be installed on J7,
between pins 1 to 3 and pins 2 to 4, as shown in the Factory
Configuration drawing above.

J7

1

5

2

6

Primary Source OnboardBattery
Secondary Source Onboard Battery

J7

1

5

2

6

Primary Source VMEbus +5V STBY
Secondary Source VMEbus +5V STBY

(Factory Configuration)

J7

1

5

2

6

Primary Source VMEbus +5V STBY
Secondary Source Onboard Battery

J7

1

5

2

6

Primary Source Onboard Battery
Secondary Source VMEbus +5V STBY

Hardware Preparation and Installation

2-6 MVME166 Single Board Computer Installation Guide

2 Installation Instructions
The following sections discuss the installation of the MVME166 in a VME
chassis, and describe system considerations relevant to the installation.
Ensure that an EPROM device is installed as needed. The factory
configuration provides for one EPROM (installed for 166BBug, the BootBug
firmware subset of the MVME166Bug debug monitor contained in Flash
memory) in socket U12. Ensure that all header jumpers are configured as
desired.

MVME166 Module Installation

Now that the MVME166 module is ready for installation, proceed as follows:

a. Turn all equipment power OFF and disconnect power cable from ac power
source.

Caution

Inserting or removing modules while power is applied
could result in damage to module components.

!
WARNING

DANGEROUS VOLTAGES, CAPABLE OF CAUSING
DEATH, ARE PRESENT IN THIS EQUIPMENT. USE
EXTREME CAUTION WHEN HANDLING, TESTING,
AND ADJUSTING.

b. Remove chassis cover as instructed in the equipment user’s manual.

c. Remove the filler panel(s) from the appropriate card slot(s) at the front and
(if the chassis has a rear card cage that you intend to use) rear of the
chassis.

The MVME166 module requires power from both P1 and P2. It may be
installed in any double-height unused card slot, if it is not configured as
system controller. If the MVME166 is configured as system controller, it
must be installed in the leftmost card slot (slot 1) to correctly initiate the
bus-grant daisy-chain and to have proper operation of the IACK-daisy-
chain driver.

Installation Instructions

MVME166IG/D2 2-7

2
The MVME166 is to be installed in the front of the chassis. The MVME712
module(s) is/are to be installed either in the front or the rear of the chassis,
depending on the I/O option you select:

Through the front panel I/O connector via cable to the MVME712-10
transition module, which may be mounted either in the forward card cage
alongside the MVME166 (recommended) or in the rear transition module
area.

Through the front panel I/O and SCSI connectors via cable to the
MVME712-06/07/09 I/O distribution board set, which likewise may be
mounted either in the forward card cage alongside the MVME166 or in the
rear transition module area.

If you opt for front mounting of the transition module(s), the MVME166
should be located at their left if possible to make use of the cabling slots
provided in its front panel. You may need to shift the placement of other
modules in the forward card cage to allow space for the double- or triple-
wide MVME166/MVME712 combination.

d. Carefully slide the MVME166 module into the card slot. Be sure the
module is seated properly in the P1 and P2 connectors on the backplane.
Do not damage or bend connector pins. Fasten the module in the chassis
with the screws provided, making good contact with the transverse
mounting rails to minimize RFI emissions.

e. On the chassis backplane, remove the IACK and BG jumpers from the
header for the card slot occupied by the MVME166.

f. Connect the transition module(s) and specified cable(s) to the MVME166
(at the I/O connector on the MVME166 front panel, according to
configuration) to mate with (optional) terminals or other peripherals at the
serial ports, parallel port, SCSI ports, and LAN Ethernet port. Connect the
peripherals to the cable(s).

Refer to the manuals listed in Related Documentation in Chapter 1 for
information on installing the MVME712 series transition modules. (Some
connection diagrams are in the MVME166/MVME167/MVME187 Single
Board Computers Programmer’s Reference Guide.) Some cables you require
may not be provided with the MVME712 series modules; you may need to
fabricate or otherwise provide those cables. (Motorola recommends using
shielded

cables for all connections to peripherals to minimize radiation.) Connect
the peripherals to the cable(s).

g. Install any other required VMEmodules in the system.

Hardware Preparation and Installation

2-8 MVME166 Single Board Computer Installation Guide

2
h. Replace the chassis cover.

i. Connect the power cable to the ac power source and turn the equipment
power ON.

System Considerations

The MVME166 draws power from both the P1 and P2 connectors on the
VMEbus backplane. P2 is also used for the upper 16 bits of data for 32-bit
transfers, and for the upper 8 address lines for extended addressing mode.
The MVME166 may not operate properly without its main board connected to
P1 and P2 of the VMEbus backplane.

Whether the MVME166 operates as a VMEbus master or as a VMEbus slave, it
is configured for 32 bits of address and for 32 bits of data (A32/D32).
However, it handles A16 or A24 devices in certain address ranges. D8 and/or
D16 devices in the system must be handled by the MC68040 software. Refer
to the memory maps in the MVME166/MVME167/MVME187 Single Board
Computers Programmer’s Reference Guide as listed in Related Documentation in
Chapter 1.

The VME Subsystem Bus (VSB, a subset of the VMEbus) used in the MVME166
is a local extension bus. It allows the MVME166 to access additional memory
and I/O over a local bus, removing traffic from the global VMEbus and
improving the total throughput of the system. The VSB interface occupies 64
I/O pins on connector P2 and utilizes the multiplexing of address and data in
order to achieve full 32-bit functionality, along with appropriate control
signals, within the 64-pin allotment.

The MVME166 contains shared onboard DRAM whose base address is
software-selectable. Both the onboard processor and offboard VMEbus
devices see this local DRAM at base physical address $00000000, as
programmed by the MVME166Bug firmware. This may be changed, by
software, to any other base address. Refer to the
MVME166/MVME167/MVME187 Single Board Computers Programmer’s
Reference Guide for details.

If the MVME166 tries to access offboard resources in a non-existent location,
and is not system controller, and if the system does not have a global bus
timeout, the MVME166 waits forever for the VMEbus cycle to complete. This
would cause the system to hang up. There is only one situation in which the
system might lack this global bus timeout: the MVME166 is not the system
controller, and there is no global bus timeout elsewhere in the system.

Multiple MVME166 modules may be configured into a single VME card cage.
In general, hardware multiprocessor features are supported.

Installation Instructions

MVME166IG/D2 2-9

2
Other MPUs on the VMEbus can interrupt, disable, communicate with and
determine the operational status of the processor(s). One register of the GCSR
set includes four bits which function as location monitors to allow one
MVME166 processor to broadcast a signal to other MVME166 processors, if
any are present. All eight registers are accessible from any local processor as
well as from the VMEbus.

The MVME166 provides +12 Vdc, -12 Vdc, and +5 Vdc power to the transition
modules through fuses F1, F3, and F4. The fused +5 Vdc power is also
provided to the 20-pin remote reset connector. These voltage sources are used
by the transition modules to power the serial port drivers and any LAN
transceivers connected to the transition module. The RPWR LED (DS3) on the
MVME166 front panel lights when all three voltages are available.

The MVME166 provides +5 Vdc to the SCSI bus TERMPWR signal through
fuse F2, located near the front panel SCSI bus connector. The TPWR LED (DS5)
on the MVME166 front panel monitors the SCSI bus TERMPWR signal; when
the MVME166 is connected to an SCSI bus, either directly or via the
MVME712-07 module, the TPWR LED lights when there is SCSI terminator
power. Because any device on the SCSI bus can provide TERMPWR, the LED
does not directly indicate the condition of the fuse. If the LED is not
illuminated during SCSI bus operation, the fuse should be checked.

Hardware Preparation and Installation

2-10 MVME166 Single Board Computer Installation Guide

2

MVME166IG/D23-1

3DEBUGGER GENERAL
INFORMATION

Overview of M68000 Firmware
The firmware for the M68000-based (68K) series of board and system level
products has a common genealogy, deriving from the BUG firmware currently
used on all Motorola M68000-based CPU modules. The M68000 firmware
family provides a high degree of functionality and user friendliness, and yet
stresses portability and ease of maintenance. This member of the M68000
firmware family is implemented on the MVME166 Single Board Computer,
and is known as the MVME166Bug, or just 166Bug.

Description of 166Bug
The 166Bug package, MVME166Bug, is a powerful evaluation and debugging
tool for systems built around the MVME166 CISC-based microcomputers.
Facilities are available for loading and executing user programs under
complete operator control for system evaluation. 166Bug includes commands
for display and modification of memory, breakpoint and tracing capabilities,
a powerful assembler/disassembler useful for patching programs, and a self-
test at power-up feature which verifies the integrity of the system. Various
166Bug routines that handle I/O, data conversion, and string functions are
available to user programs through the TRAP #15 system calls.

166Bug consists of three parts:

❏ A command-driven user-interactive software debugger, described in
Chapter 4 and hereafter referred to as "the debugger" or "166Bug".

❏ A command-driven diagnostic package for the MVME166 hardware,
hereafter referred to as "the diagnostics".

❏ A user interface which accepts commands from the system console
terminal.

Debugger General Information

3-2 MVME166 Single Board Computer Installation Guide

3

When using 166Bug, you operate out of either the debugger directory or the
diagnostic directory. If you are in the debugger directory, the debugger
prompt "166-Bug>" is displayed and you have all of the debugger commands
at your disposal. If you are in the diagnostic directory, the diagnostic prompt
"166-Diag>" is displayed and you have all of the diagnostic commands at your
disposal as well as all of the debugger commands. You may switch between
directories by using the Switch Directories (SD) command, or may examine
the commands in the particular directory that you are currently in by using the
Help (HE) command.

Because 166Bug is command-driven, it performs its various operations in
response to user commands entered at the keyboard. When you enter a
command, 166Bug executes the command and the prompt reappears.
However, if you enter a command that causes execution of user target code
(e.g., "GO"), then control may or may not return to 166Bug, depending on the
outcome of the user program.

If you have used one or more of Motorola’s other debugging packages, you
will find the CISC 166Bug very similar. Some effort has also been made to
make the interactive commands more consistent. For example, delimiters
between commands and arguments may now be commas or spaces
interchangeably.

166Bug Implementation

MVME166IG/D2 3-3

3

166Bug Implementation
MVME166Bug is written largely in the "C" programming language, providing
benefits of portability and maintainability. Where necessary, assembler has
been used in the form of separately compiled modules containing only
assembler code - no mixed language modules are used.

Physically, 166Bug is contained in four Flash memory components. The
onboard Flash memory provides 1.0MB (256KB longwords) of nonvolatile
storage. The 166Bug consumes the first half (512KB) of this memory, leaving
the second half available for user applications. A command is provided, both
in the regular "Bug" product and the "BootBug" product, to allow erasing and
reprogramming this Flash memory.

!
WARNING

Reprogramming any portion of Flash memory, will erase
everything currently contained in Flash, including the
166Bug product! You must copy the 166Bug from Flash to
RAM, combine your application with the 166Bug image,
and then reprogram Flash with the combined object image.

Installation and Startup
Even though the MVME166Bug firmware is installed on the MVME166
module, for 166Bug to operate properly with the MVME166, follow this set-up
procedure.

Debugger General Information

3-4 MVME166 Single Board Computer Installation Guide

3

Caution

Inserting or removing modules while power is applied
could damage module components.

1. Turn all equipment power OFF. Refer to the Hardware Preparation section
in Chapter 2 and install/remove jumpers on headers as required for your
particular application. Jumpers on header J3 affect 166Bug operation as
listed below. The default condition is with all eight jumpers installed,
between pins 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14, and 15-16.

The MVME166 may be configured with these readable jumpers. These
jumpers can be read as a register (at $FFF40088) in the VMEchip2 LCSR.
The bit values are read as a one when the jumper is off, and as a zero when
the jumper is on. This jumper block (header J3) contains eight bits. Refer
to the MVME166/MVME167/MVME187 Single Board Computers
Programmer’s Reference Guide.

The MVME166Bug reserves/defines the four lower order bits (GPI3 to
GPI0). The following is the description for the bits reserved/defined by
the debugger:

Installation and Startup

MVME166IG/D2 3-5

3

Note that when the MVME166 comes up in a cold reset, 166Bug runs in
System Mode. Using the Environment (ENV) or MENU commands can
make 166Bug run in Board mode. Refer to Appendix A.

2. Configure header J6 by installing/removing a jumper between pins 1 and
2. A jumper installed/removed enables/disables the system controller
function of the MVME166.

Bit J3 Pins Description

Bit #0 (GPI0) 1-2 When this bit is a one (high), it instructs the debugger
to use local Static RAM for its work page (i.e.,
variables, stack, vector tables, etc.).

Bit #1 (GPI1) 3-4 When this bit is a one (high), it instructs the debugger
to use the default setup/operation parameters in ROM
versus the user setup/operation parameters in
NVRAM. This is the same as depressing the RESET
and ABORT switches at the same time. This feature
can be used in the event the user setup is corrupted or
does not meet a sanity check. Refer to the ENV
command (Appendix A) for the ROM defaults.

Bit #2 (GPI2) 5-6 Reserved for future use.

Bit #3 (GPI3) 7-8 When this bit is a one (jumper out) the BootBug will
continue execution after reset or power up. Normal
operation (jumper in) results in the BootBug executing
the 166Bug debugger in Flash memory.

Bit #4 (GPI4) 9-10 Open to your application.

Bit #5 (GPI5) 11-12 Open to your application.

Bit #6 (GPI6) 13-14 Open to your application.

Bit #7 (GPI7) 15-16 Open to your application.

Debugger General Information

3-6 MVME166 Single Board Computer Installation Guide

3

3. Refer to the set-up procedure for your particular chassis or system for
details concerning the installation of the MVME166.

4. Connect the terminal which is to be used as the 166Bug system console to
the default debug EIA-232-D port at serial port 1 on front panel I/O
connector J9 through an MVME712-10 or MVME712-06 transition module.
Refer to the MVME166/MVME167/MVME187 Single Board Computers
Programmer’s Reference Guide for some possible connection diagrams. Set
up the terminal as follows:

– eight bits per character

– one stop bit per character

– parity disabled (no parity)

– baud rate 9600 baud (default baud rate of MVME166 ports at power-
up)

After power-up, the baud rate of the debug port can be reconfigured by
using the Port Format (PF) command of the 166Bug debugger.

Note

In order for high-baud rate serial communication between
166Bug and the terminal to work, the terminal must do some
form of handshaking. If the terminal being used does not
do hardware handshaking via the CTS line, then it must do
XON/XOFF handshaking. If you get garbled messages and
missing characters, then you should check the terminal to
make sure XON/XOFF handshaking is enabled.

5. If you want to connect devices (such as a host computer system and/or a
serial printer) to the other EIA-232-D port connectors (marked SERIAL
PORTS 2, 3, and 4 on the MVME712-10 or MVME712-06 transition
module), connect the appropriate cables and configure the port(s) as
detailed in step 4. above. After power-up, this(these) port(s) can be
reconfigured by programming the MVME166 CD2401 Serial Controller
Chip (SCC), or by using the 166Bug PF command.

Note that the MVME166 also contains a parallel port. To use a parallel
device, such as a printer, with the MVME166, connect it to the
PRINTER/PARALLEL port on an MVME712-10 or MVME712-07
transition module. Refer to the MVME166/MVME167/MVME187 Single
Board Computers Programmer’s Reference Guide for some possible
connection diagrams. However, you could also use a module such as the
MVME335 for a parallel port connection.

BOOTBUG

MVME166IG/D2 3-7

3

6. Power up the system. 166Bug executes some self-checks and displays the
debugger prompt "166-Bug>" (if 166Bug is in Board Mode). However, if
the ENV command (Appendix A) has put 166Bug in System Mode, the
system performs a selftest and tries to autoboot. Refer to the ENV and
MENU commands. They are listed in Table 4-3.

If the confidence test fails, the test is aborted when the first fault is
encountered. If possible, an appropriate message is displayed, and control
then returns to the menu.

BOOTBUG

166BBug Implementation

The MVME166 board has a byte-wide EPROM in addition to the Flash
memory used to contain the debugger and diagnostics firmware. The EPROM
supplied contains the BootBug product (166BBug). Since Flash memory can be
electronically erased, the firmware contained in this EPROM is a miniature
version of the regular debugger product. It contains enough functionality to
enable downloading of object code (by means of the VMEbus, serial port, SCSI
bus, or the network) and reprogramming of the Flash memory.

The following table lists the the new commands available in the 166BBug
product.

Detailed descriptions of additional subset commands can be found in the
Debugging Package for Motorola 68K CISC CPUs User’s Manual.

There is a jumper on the MVME166 board that controls the operation of the
BootBug. If the jumper at J3 pins 7 and 8 is in place (GPI3), then the BootBug
(which always executes at reset and powerup) will unconditionally jump to
the debugger product contained in the Flash memory. If this jumper is
removed, execution will continue in the (diminished functionality) BootBug.

Before using some of the features of the MVME166 BootBug, some parameters
may need to be defined. For example, the SCSI ID, the Ethernet address, the
clock speed of the board, or possibly the mapping of VMEbus. There is a new
command provided for this purpose, the setup command. You should run
this command and answer the prompts to be sure the board is configured
properly before using any SCSI, VME, or Ethernet I/O.

Command Description

EXEC Execute User Program

SETUP Set "System" Parameters

Debugger General Information

3-8 MVME166 Single Board Computer Installation Guide

3

Execute User Program

EXEC [ADDR]

The EXEC command is used to initiate target code execution. The specified
address ("ADDR") is placed in the target Program Counter (PC). Execution
will start at the target PC address.

Setup System Parameters

SETUP

Setup allows configuring certain parameters that are necessary for some I/O
operations (SCSI, VME, and Ethernet). When you execute this command, the
default value is displayed, if any is available, and then you are prompted for
input.

The SETUP command VME parameters do not stay through a reset. These
parameters are not saved to NVRAM. The remaining parameters (MPU Clock
Speed, Ethernet Address, Local SCSI Identifier) are saved to NVRAM, but are
not checksummed.

166-Bug>setup
MPU Clock Speed = "3300"?
Ethernet Address = 000000000000?
Local SCSI Identifier = "07"?
VME Slave Enable [Y/N] = N?
VME Slave Starting Address = 00000000?
VME Slave Ending Address = 00000000?
VME Slave Address Translation Address = 00000000?
VME Slave Address Translation Select = 00000000?
VME Slave Control = 0000?
VME Master Enable [Y/N] = Y?
VME Master Starting Address = 40000000?
VME Master Ending Address = 4FFFFFFF?
VME Master Address Translation Address = 00000000?
VME Master Address Translation Select = 00000000?
VME Master Control = 0D?

Autoboot

MVME166IG/D2 3-9

3

Autoboot
Autoboot is a software routine that is contained in the 166Bug Flash /ROM
firmware to provide an independent mechanism for booting an operating
system. This autoboot routine automatically scans for controllers and devices
in a specified sequence until a valid bootable device containing a boot media
is found or the list is exhausted. If a valid bootable device is found, a boot from
that device is started. The controller scanning sequence goes from the lowest
controller Logical Unit Number (LUN) detected to the highest LUN detected.
Controllers, devices, and their LUNs are listed in Appendix B.

At power-up, Autoboot is enabled, and providing the drive and controller
numbers encountered are valid, the following message is displayed upon the
system console:

"Autoboot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you an opportunity to abort
the Autoboot process if you wish. Then the actual I/O is begun: the program
pointed to within the volume ID of the media specified is loaded into RAM
and control passed to it. If, however, during this time you want to gain control
without Autoboot, you can press the <BREAK> key or the software ABORT or
RESET switches.

Autoboot is controlled by parameters contained in the ENV command. These
parameters allow the selection of specific boot devices and files, and allow
programming of the Boot delay. Refer to the ENV command in Appendix A
for more details.

Caution

Although streaming tape can be used to autoboot, the same
power supply must be connected to the streaming tape
drive, controller, and the MVME166. At power-up, the tape
controller will position the streaming tape to load point
where the volume ID can correctly be read and used.

If, however, the MVME166 loses power but the controller
does not, and the tape happens to be at load point, the
sequences of commands required (attach and rewind)
cannot be given to the controller and autoboot will not be
successful.

Debugger General Information

3-10 MVME166 Single Board Computer Installation Guide

3

ROMboot
On the MVME166, if you want to add other firmware applications, you must
note that anytime Flash memory is programmed, the entire contents of Flash
will be erased, including the 166Bug product! You should make use of the
"block move" command (BM) to copy the debugger from Flash to RAM,
combine your own object with the debugger in RAM, and then reprogram
Flash from this combined image.

This function is configured/enabled by the Environment (ENV) command
(refer to Appendix A) and executed at power-up (optionally also at reset) or by
the RB command assuming there is valid code in the Flash (or optionally
elsewhere on the module or VMEbus) to support it. If ROMboot code is
installed, a user-written routine is given control (if the routine meets the
format requirements). One use of ROMboot might be resetting SYSFAIL* on
an unintelligent controller module. The NORB command disables the
function.

For a user’s ROMboot module to gain control through the ROMboot linkage,
four requirements must be met:

a. Power must have just been applied (but the ENV command can change
this to also respond to any reset).

b. Your routine must be located within the MVME166 ROM memory map
(but the ENV command can change this to any other portion of the
onboard memory, or even offboard VMEbus memory).

c. The ASCII string "BOOT" must be located within the specified memory
range.

d. Your routine must pass a checksum test, which ensures that this routine
was really intended to receive control at power-up.

For complete details on how to use ROMboot, refer to the Debugging Package
for Motorola 68K CISC CPUs User’s Manual.

Network Boot
Network Auto Boot is a software routine contained in the 166Bug EPROMs
that provides a mechanism for booting an operating system using a network
(local Ethernet interface) as the boot device. The Network Auto Boot routine
automatically scans for controllers and devices in a specified sequence until a
valid bootable device containing a boot media is found or the list is exhausted.
If a valid bootable device is found, a boot from that device is started. The

Restarting the System

MVME166IG/D2 3-11

3

controller scanning sequence goes from the lowest controller Logical Unit
Number (LUN) detected to the highest LUN detected. (Refer to Appendix C
for default LUNs.)

At power-up, Network Boot is enabled, and providing the drive and controller
numbers encountered are valid, the following message is displayed upon the
system console:

"Network Boot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you to abort the Auto Boot
process if you wish. Then the actual I/O is begun: the program pointed to
within the volume ID of the media specified is loaded into RAM and control
passed to it. If, however, during this time you want to gain control without
Network Boot, you can press the <BREAK> key or the software ABORT or
RESET switches.

Network Auto Boot is controlled by parameters contained in the NIOT and
ENV commands. These parameters allow the selection of specific boot
devices, systems, and files, and allow programming of the Boot delay. Refer
to the ENV command in Appendix A for more details.

Restarting the System
You can initialize the system to a known state in three different ways: reset,
abort, and break. Each has characteristics which make it more appropriate
than the others in certain situations.

The debugger has a special feature upon a reset condition. This feature is
activated by depressing the RESET and ABORT switches at the same time.
This feature instructs the debugger to use the default setup/operation
parameters in ROM versus your setup/operation parameters in NVRAM.
This feature can be used in the event your setup/operation parameters are
corrupted or do not meet a sanity check. Refer to the ENV command
(Appendix A) for the ROM defaults.

Reset

Pressing and releasing the MVME166 front panel RESET switch initiates a
system reset. COLD and WARM reset modes are available. By default,
166Bug is in COLD mode. During COLD reset, a total system initialization
takes place, as if the MVME166 had just been powered up. All static variables
(including disk device and controller parameters) are restored to their default
states. The breakpoint table and offset registers are cleared. The target

Debugger General Information

3-12 MVME166 Single Board Computer Installation Guide

3

registers are invalidated. Input and output character queues are cleared.
Onboard devices (timer, serial ports, etc.) are reset, and the first two serial
ports are reconfigured to their default state.

During WARM reset, the 166Bug variables and tables are preserved, as well as
the target state registers and breakpoints.

Reset must be used if the processor ever halts, or if the 166Bug environment is
ever lost (vector table is destroyed, stack corrupted, etc.).

Abort

Abort is invoked by pressing and releasing the ABORT switch on the
MVME166 front panel. Whenever abort is invoked when executing a user
program (running target code), a "snapshot" of the processor state is captured
and stored in the target registers. For this reason, abort is most appropriate
when terminating a user program that is being debugged. Abort should be
used to regain control if the program gets caught in a loop, etc. The target PC,
register contents, etc., help to pinpoint the malfunction.

Pressing and releasing the ABORT switch generates a local board condition
which may interrupt the processor if enabled. The target registers, reflecting
the machine state at the time the ABORT switch was pressed, are displayed on
the screen. Any breakpoints installed in your code are removed and the
breakpoint table remains intact. Control is returned to the debugger.

Break

A "Break" is generated by pressing and releasing the BREAK key on the
terminal keyboard. Break does not generate an interrupt. The only time break
is recognized is when characters are sent or received by the console port.
Break removes any breakpoints in your code and keeps the breakpoint table
intact. Break also takes a snapshot of the machine state if the function was
entered using SYSCALL. This machine state is then accessible to you for
diagnostic purposes.

Many times it may be desirable to terminate a debugger command prior to its
completion; for example, during the display of a large block of memory. Break
allows you to terminate the command.

SYSFAIL* Assertion/Negation

Upon a reset/powerup condition the debugger asserts the VMEbus SYSFAIL*
line (refer to the VMEbus specification). SYSFAIL* stays asserted if any of the
following has occurred:

Memory Requirements

MVME166IG/D2 3-13

3

❏ confidence test failure

❏ NVRAM checksum error

❏ NVRAM low battery condition

❏ local memory configuration status

❏ self test (if system mode) has completed with error

❏ MPU clock speed calculation failure

After debugger initialization is done and none of the above situations have
occurred, the SYSFAIL* line is negated. This indicates to the user or VMEbus
masters the state of the debugger. In a multi-computer configuration, other
VMEbus masters could view the pertinent control and status registers to
determine which CPU is asserting SYSFAIL*. SYSFAIL* assertion/negation is
also affected by the ENV command. Refer to Appendix A.

MPU Clock Speed Calculation

The clock speed of the microprocessor is calculated and checked against a user
definable parameter housed in NVRAM (refer to the CNFG command in
Appendix A). If the check fails, a warning message is displayed. The
calculated clock speed is also checked against known clock speeds and
tolerances.

Memory Requirements
The program portion of 166Bug is approximately 512KB of code, consisting of
download, debugger, and diagnostic packages and contained entirely in Flash.
The Flash memory on the MVME166 is mapped starting at location $FF800000.

166Bug requires a minimum of 64KB of contiguous read/write memory to
operate.

The ENV command controls where this block of memory is located.
Regardless of where the onboard RAM is located, the first 64KB is used for
166Bug stack and static variable space and the rest is reserved as user space.
Whenever the MVME166 is reset, the target PC is initialized to the address
corresponding to the beginning of the user space, and the target stack pointers
are initialized to addresses within the user space, with the target Interrupt
Stack Pointer (ISP) set to the top of the user space.

At power up or reset, all 8KB of memory at addresses $FFE0C000 through
$FFE0DFFF is completely changed by the 166Bug initial stack.

Debugger General Information

3-14 MVME166 Single Board Computer Installation Guide

3

Terminal Input/Output Control
When entering a command at the prompt, the following control codes may be
entered for limited command line editing.

Note

The presence of the caret (^) before a character indicates
that the Control (CTRL) key must be held down while
striking the character key.

^X (cancel line) The cursor is backspaced to the beginning of the line. If the
terminal port is configured with the hardcopy or TTY option
(refer to PF command), then a carriage return and line feed is
issued along with another prompt.

^H (backspace) The cursor is moved back one position. The character at the
new cursor position is erased. If the hardcopy option is
selected, a "/" character is typed along with the deleted
character.

 (delete or
rubout)

Performs the same function as ^H.

^D (redisplay) The entire command line as entered so far is redisplayed on
the following line.

^A (repeat) Repeats the previous line. This happens only at the command
line. The last line entered is redisplayed but not executed.
The cursor is positioned at the end of the line. You may enter
the line as is or you can add more characters to it. You can
edit the line by backspacing and typing over old characters.

Disk I/O Support

MVME166IG/D2 3-15

3

When observing output from any 166Bug command, the XON and XOFF
characters which are in effect for the terminal port may be entered to control
the output, if the XON/XOFF protocol is enabled (default). These characters
are initialized to ̂ S and ̂ Q respectively by 166Bug, but you may change them
with the PF command. In the initialized (default) mode, operation is as
follows:

Disk I/O Support
166Bug can initiate disk input/output by communicating with intelligent disk
controller modules over the VMEbus. Disk support facilities built into 166Bug
consist of command-level disk operations, disk I/O system calls (only via one
of the TRAP #15 instructions) for use by user programs, and defined data
structures for disk parameters.

Parameters such as the address where the module is mapped and the type and
number of devices attached to the controller module are kept in tables by
166Bug. Default values for these parameters are assigned at power-up and
cold-start reset, but may be altered as described in the section on default
parameters, later in this chapter.

Appendix B contains a list of the controllers presently supported, as well as a
list of the default configurations for each controller.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A disk is
viewed by 166Bug as a storage area divided into logical blocks. By default, the
logical block size is set to 256 bytes for every block device in the system. The
block size can be changed on a per device basis with the IOT command.

The sector defines the unit of information for the media itself, as viewed by the
controller. The sector size varies for different controllers, and the value for a
specific device can be displayed and changed with the IOT command.

When a disk transfer is requested, the start and size of the transfer is specified
in blocks. 166Bug translates this into an equivalent sector specification, which
is then passed on to the controller to initiate the transfer. If the conversion
from blocks to sectors yields a fractional sector count, an error is returned and
no data is transferred.

^S (wait) Console output is halted.

^Q (resume) Console output is resumed.

Debugger General Information

3-16 MVME166 Single Board Computer Installation Guide

3

Device Probe Function

A device probe with entry into the device descriptor table is done whenever a
specified device is accessed; i.e., when system calls .DSKRD, .DSKWR,
.DSKCFIG, .DSKFMT, and .DSKCTRL, and debugger commands BH, BO,
IOC, IOP, IOT, MAR, and MAW are used.

The device probe mechanism utilizes the SCSI commands "Inquiry" and
"Mode Sense". If the specified controller is non-SCSI, the probe simply returns
a status of "device present and unknown". The device probe makes an entry
into the device descriptor table with the pertinent data. After an entry has
been made, the next time a probe is done it simply returns with "device
present" status (pointer to the device descriptor).

Disk I/O via 166Bug Commands

These following 166Bug commands are provided for disk I/O. Detailed
instructions for their use are found in the Debugging Package for Motorola 68K
CISC CPUs User’s Manual. When a command is issued to a particular
controller LUN and device LUN, these LUNs are remembered by 166Bug so
that the next disk command defaults to use the same controller and device.

IOI (Input/Output Inquiry)

This command is used to probe the system for all possible CLUN/DLUN
combinations and display inquiry data for devices which support it. The
device descriptor table only has space for 16 device descriptors; with the IOI
command, you can view the table and clear it if necessary.

IOP (Physical I/O to Disk)

IOP allows you to read or write blocks of data, or to format the specified
device in a certain way. IOP creates a command packet from the arguments
you have specified, and then invokes the proper system call function to carry
out the operation.

IOT (I/O Teach)

IOT allows you to change any configurable parameters and attributes of the
device. In addition, it allows you to see the controllers available in the system.

Disk I/O Support

MVME166IG/D2 3-17

3

IOC (I/O Control)

IOC allows you to send command packets as defined by the particular
controller directly. IOC can also be used to look at the resultant device packet
after using the IOP command.

BO (Bootstrap Operating System)

BO reads an operating system or control program from the specified device
into memory, and then transfers control to it.

BH (Bootstrap and Halt)

BH reads an operating system or control program from a specified device into
memory, and then returns control to 166Bug. It is used as a debugging tool.

Disk I/O via 166Bug System Calls

All operations that actually access the disk are done directly or indirectly by
166Bug TRAP #15 system calls. (The command-level disk operations provide
a convenient way of using these system calls without writing and executing a
program.)

The following system calls are provided to allow user programs to do disk
I/O:

Refer to the Debugging Package for Motorola 68K CISC CPUs User’s Manual for
information on using these and other system calls.

.DSKRD Disk read. System call to read blocks from a disk into memory.

.DSKWR Disk write. System call to write blocks from memory onto a disk.

.DSKCFIG Disk configure. This function allows you to change the configuration
of the specified device.

.DSKFMT Disk format. This function allows you to send a format command to
the specified device.

.DSKCTRL Disk control. This function is used to implement any special device
control functions that cannot be accommodated easily with any of the
other disk functions.

Debugger General Information

3-18 MVME166 Single Board Computer Installation Guide

3

To perform a disk operation, 166Bug must eventually present a particular disk
controller module with a controller command packet which has been
especially prepared for that type of controller module. (This is accomplished
in the respective controller driver module.) A command packet for one type
of controller module usually does not have the same format as a command
packet for a different type of module. The system call facilities which do disk
I/O accept a generalized (controller-independent) packet format as an
argument, and translate it into a controller-specific packet, which is then sent
to the specified device. Refer to the system call descriptions in the Debugging
Package for Motorola 68K CISC CPUs User’s Manual for details on the format and
construction of these standardized "user" packets.

The packets which a controller module expects to be given vary from
controller to controller. The disk driver module for the particular hardware
module (board) must take the standardized packet given to a trap function
and create a new packet which is specifically tailored for the disk drive
controller it is sent to. Refer to documentation on the particular controller
module for the format of its packets, and for using the IOC command.

Default 166Bug Controller and Device Parameters

166Bug initializes the parameter tables for a default configuration of
controllers and devices (refer to Appendix B). If the system needs to be
configured differently than this default configuration (for example, to use a
70MB Winchester drive where the default is a 40MB Winchester drive), then
these tables must be changed.

There are three ways to change the parameter tables:

❏ Use BO or BH. When you invoke one of these commands, the
configuration area of the disk is read and the parameters corresponding to
that device are rewritten according to the parameter information
contained in the configuration area. This is a temporary change. If a cold-
start reset occurs, then the default parameter information is written back
into the tables.

❏ Use the IOT. You can use this command to reconfigure the parameter
table manually for any controller and/or device that is different from the
default. This is also a temporary change and is overwritten if a cold-start
reset occurs.

❏ Obtain the source. You can then change the configuration files and rebuild
166Bug so that it has different defaults. Changes made to the defaults are
permanent until changed again.

Network I/O Support

MVME166IG/D2 3-19

3

Disk I/O Error Codes

166Bug returns an error code if an attempted disk operation is unsuccessful.

Network I/O Support
The Network Boot Firmware provides the capability to boot the CPU through
the ROM debugger using a network (local Ethernet interface) as the boot
device.

The booting process is executed in two distinct phases.

❏ The first phase allows the diskless remote node to discover its network
identify and the name of the file to be booted.

❏ The second phase has the diskless remote node reading the boot file across
the network into its memory.

The various modules (capabilities) and the dependencies of these modules
that support the overall network boot function are described in the following
paragraphs.

Intel 82596 LAN Coprocessor Ethernet Driver

This driver manages/surrounds the Intel 82596 LAN Coprocessor.
Management is in the scope of the reception of packets, the transmission of
packets, receive buffer flushing, and interface initialization.

This module ensures that the packaging and unpackaging of Ethernet packets
is done correctly in the Boot PROM.

UDP/IP Protocol Modules

The Internet Protocol (IP) is designed for use in interconnected systems of
packet-switched computer communication networks. The Internet protocol
provides for transmitting of blocks of data called datagrams (hence User
Datagram Protocol, or UDP) from sources to destinations, where sources and
destinations are hosts identified by fixed length addresses.

The UDP/IP protocols are necessary for the TFTP and BOOTP protocols; TFTP
and BOOTP require a UDP/IP connection.

Debugger General Information

3-20 MVME166 Single Board Computer Installation Guide

3

RARP/ARP Protocol Modules

The Reverse Address Resolution Protocol (RARP) basically consists of an
identity-less node broadcasting a "whoami" packet onto the Ethernet, and
waiting for an answer. The RARP server fills an Ethernet reply packet up with
the target’s Internet Address and sends it.

The Address Resolution Protocol (ARP) basically provides a method of
converting protocol addresses (e.g., IP addresses) to local area network
addresses (e.g., Ethernet addresses). The RARP protocol module supports
systems which do not support the BOOTP protocol (next paragraph).

BOOTP Protocol Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client machine to
discover its own IP address, the address of a server host, and the name of a file
to be loaded into memory and executed.

TFTP Protocol Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to transfer files.
It is implemented on top of the Internet User Datagram Protocol (UDP or
Datagram) so it may be used to move files between machines on different
networks implementing UDP. The only thing it can do is read and write files
from/to a remote server.

Network Boot Control Module

The "control" capability of the Network Boot Control Module is needed to tie
together all the necessary modules (capabilities) and to sequence the booting
process. The booting sequence consists of two phases: the first phase is labeled
"address determination and bootfile selection" and the second phase is labeled
"file transfer". The first phase will utilize the RARP/BOOTP capability and the
second phase will utilize the TFTP capability.

Network I/O Error Codes

166Bug returns an error code if an attempted network operation is
unsuccessful.

Multiprocessor Support

MVME166IG/D2 3-21

3

Multiprocessor Support
The MVME166 dual-port RAM feature makes the shared RAM available to
remote processors as well as to the local processor. This can be done by either
of the following two methods. Either method can be enabled/disabled by the
ENV command as its Remote Start Switch Method (refer to Appendix A).

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution in the local MVME166
dual-port RAM by issuing a remote GO command using the Multiprocessor
Control Register (MPCR). The MPCR, located at shared RAM location of $800
offset from the base address the debugger loads it at, contains one of two
longwords used to control communication between processors. The MPCR
contents are organized as follows:

The status codes stored in the MPCR are of two types:

❏ Status returned (from the monitor)

❏ Status set (by the bus master)

The status codes that may be returned from the monitor are:

You can only program Flash memory by the MPCR method. Refer to the
.PFLASH system call in the Debugging Package for Motorola 68K CISC CPUs
User’s Manual for a description of the Flash memory program control packet
structure.

The status codes that may be set by the bus master are:

$800 * N/A N/A N/A (MPCR)

HEX 0 (HEX 00) -- Wait. Initialization not yet complete.

ASCII E (HEX 45) -- Code pointed to by the MPAR address is executing.

ASCII P (HEX 50) -- Program Flash Memory. The MPAR is set to the
address of the Flash memory program control packet.

ASCII R (HEX 52) -- Ready. The firmware monitor is watching for a change.

ASCII G (HEX 47) -- Use Go Direct (GD) logic specifying the MPAR address.

ASCII B (HEX 42) -- Install breakpoints using the Go (G) logic.

Debugger General Information

3-22 MVME166 Single Board Computer Installation Guide

3

The Multiprocessor Address Register (MPAR), located in shared RAM
location of $804 offset from the base address the debugger loads it at, contains
the second of two longwords used to control communication between
processors. The MPAR contents specify the address at which execution for the
remote processor is to begin if the MPCR contains a G or B. The MPAR is
organized as follows:

At power-up, the debug monitor self-test routines initialize RAM, including
the memory locations used for multi-processor support ($800 through $807).

The MPCR contains $00 at power-up, indicating that initialization is not yet
complete. As the initialization proceeds, the execution path comes to the
"prompt" routine. Before sending the prompt, this routine places an R in the
MPCR to indicate that initialization is complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to see whether
an external processor requires control to be passed to the dual-port RAM. If a
terminal does respond, the MPCR is polled for the same purpose while the
serial port is being polled for user input.

An ASCII G placed in the MPCR by a remote processor indicates that the Go
Direct type of transfer is requested. An ASCII B in the MPCR indicates that
breakpoints are to be armed before control is transferred (as with the GO
command).

In either sequence, an E is placed in the MPCR to indicate that execution is
underway just before control is passed to RAM. (Any remote processor could
examine the MPCR contents.)

If the code being executed in dual-port RAM is to reenter the debug monitor,
a TRAP #15 call using function $0063 (SYSCALL .RETURN) returns control to
the monitor with a new display prompt. Note that every time the debug
monitor returns to the prompt, an R is moved into the MPCR to indicate that
control can be transferred once again to a specified RAM location.

$804 * * * * (MPAR)

Diagnostic Facilities

MVME166IG/D2 3-23

3

GCSR Method

A remote processor can initiate program execution in the local MVME166
dual-port RAM by issuing a remote GO command using the VMEchip2 Global
Control and Status Registers (GCSR). The remote processor places the
MVME166 execution address in general purpose registers 0 and 1 (GPCSR0
and GPCSR1). The remote processor then sets bit 8 (SIG0) of the VMEchip2
LM/SIG register. This causes the MVME166 to install breakpoints and begin
execution. The result is identical to the MPCR method (with status code B)
described in the previous section.

The GCSR registers are accessed in the VMEbus short I/O space. Each general
purpose register is two bytes wide, occurring at an even address. The general
purpose register number 0 is at an offset of $8 (local bus) or $4 (VMEbus) from
the start of the GCSR registers. The local bus base address for the GCSR is
$FFF40100. The VMEbus base address for the GCSR depends on the group
select value and the board select value programmed in the Local Control and
Status Registers (LCSR) of the MVME166. The execution address is formed by
reading the GCSR general purpose registers in the following manner:

The address appears as:

Diagnostic Facilities
The 166Bug package includes a complete set of hardware diagnostics intended
for testing and troubleshooting of the MVME166. These diagnostics are
completely described in the MVME167Bug Debugging Package User’s Manual.
To use the diagnostics, switch directories to the diagnostic directory. If you are
in the debugger directory, you can switch to the diagnostic directory by
entering the debugger command Switch Directories (SD). The diagnostic
prompt ("166-Diag>") appears. Refer to the MVME167Bug Debugging Package
User’s Manual for complete descriptions of the diagnostic routines available
and instructions on how to invoke them. Note that some diagnostics depend
on restart defaults that are set up only in a particular restart mode. The
documentation for such diagnostics includes restart information.

GPCSR0 used as the upper 16 bits of the address

GPCSR1 used as the lower 16 bits of the address

GPCSR0 GPCSR1

Debugger General Information

3-24 MVME166 Single Board Computer Installation Guide

3

MVME166IG/D24-1

4USING THE 166Bug
DEBUGGER

Entering Debugger Command Lines
166Bug is command-driven and performs its various operations in response to
user commands entered at the keyboard. When the debugger prompt
(166-Bug>) appears on the terminal screen, then the debugger is ready to
accept commands.

As the command line is entered, it is stored in an internal buffer. Execution
begins only after the carriage return is entered, so that you can correct entry
errors, if necessary, using the control characters described in Chapter 3.

When a command is entered, the debugger executes the command and the
prompt reappears. However, if the command entered causes execution of user
target code, for example GO, then control may or may not return to the
debugger, depending on what the user program does. For example, if a
breakpoint has been specified, then control returns to the debugger when the
breakpoint is encountered during execution of the user program. Alternately,
the user program could return to the debugger by means of the TRAP #15
function ".RETURN".

In general, a debugger command is made up of the following parts:

a. The command identifier (i.e., MD or md for the Memory Display
command). Note that either upper- or lowercase is allowed.

b. A port number if the command is set up to work with more than one port.

c. At least one intervening space before the first argument.

d. Any required arguments, as specified by command.

e. An option field, set off by a semicolon (;) to specify conditions other than
the default conditions of the command.

Using the 166Bug Debugger

4-2 MVME166 Single Board Computer Installation Guide

4

The commands are shown using a modified Backus-Naur form syntax. The
metasymbols used are:

Syntactic Variables

The following syntactic variables are encountered in the command
descriptions which follow. In addition, other syntactic variables may be used
and are defined in the particular command description in which they occur.

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a "syntactic variable" and is to be
replaced by one of a class of items it represents.

| A vertical bar separating two or more items indicates that
a choice is to be made; only one of the items separated by
this symbol should be selected.

[] Square brackets enclose an item that is optional. The item
may appear zero or one time.

{ } Braces enclose an optional symbol that may occur zero or
more times.

DEL Delimiter; either a comma or a space.

EXP Expression (described in detail in a following section).

ADDR Address (described in detail in a following section).

COUNT Count; the syntax is the same as for EXP.

RANGE A range of memory addresses which may be specified either
by ADDR DEL ADDR or by ADDR : COUNT.

TEXT An ASCII string of up to 255 characters, delimited at each end
by the single quote mark (’).

Entering Debugger Command Lines

MVME166IG/D2 4-3

4

Expression as a Parameter

An expression can be one or more numeric values separated by the arithmetic
operators: plus (+), minus (-), multiplied by (*), divided by (/), logical AND
(&), shift left (<<), or shift right (>>).

Numeric values may be expressed in either hexadecimal, decimal, octal, or
binary by immediately preceding them with the proper base identifier.

If no base identifier is specified, then the numeric value is assumed to be
hexadecimal.

A numeric value may also be expressed as a string literal of up to four
characters. The string literal must begin and end with the single quote mark
(’). The numeric value is interpreted as the concatenation of the ASCII values
of the characters. This value is right-justified, as any other numeric value
would be.

Evaluation of an expression is always from left to right unless parentheses are
used to group part of the expression. There is no operator precedence.
Subexpressions within parentheses are evaluated first. Nested parenthetical
subexpressions are evaluated from the inside out.

Data Type Base Identifier Examples

Integer Hexadecimal $ $FFFFFFFF

Integer Decimal & &1974, &10-&4

Integer Octal @ @456

Integer Binary % %1000110

String
Literal

Numeric Value
(In Hexadecimal)

’A’ 41

’ABC’ 414243

’TEST’ 54455354

Using the 166Bug Debugger

4-4 MVME166 Single Board Computer Installation Guide

4

Valid expression examples:

The total value of the expression must be between 0 and $FFFFFFFF.

Address as a Parameter

Many commands use ADDR as a parameter. The syntax accepted by 166Bug
is similar to the one accepted by the MC68040 one-line assembler. All control
addressing modes are allowed. An "address + offset register" mode is also
provided.

Address Formats

Table 4-1 summarizes the address formats which are acceptable for address
parameters in debugger command lines.

Expression Result (In Hex) Notes

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

%10011110+%1001 A7

88<<4 880 shift left

AA&F0 A0 logical AND

Entering Debugger Command Lines

MVME166IG/D2 4-5

4

Table 4-1. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of the
specified offset register (not an
assembler-accepted syntax).

(An) (A1) Address register indirect. (also post-
increment, predecrement)

(d,An) or
d(An)

(120,A1)
120(A1)

Address register indirect with dis-
placement (two formats accepted).

(d,An,Xn) or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with index
and displacement (two formats
accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.

([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.

For the memory indirect modes, fields can be omitted.
For example, three of many permutations are as follows:

([,An],od) ([,A1],4)

([bd]) ([FC1E])

([bd,,Xn]) ([8,,D2])

NOTES: N — Absolute address(any valid expression).

An — Address register n.

Xn — Index register n (An or Dn).

d — Displacement (any valid expression).

bd — Base displacement (any valid expression).

od — Outer displacement (any valid expression).

n — Register number (0 to 7).

Rn — Offset register n.

Using the 166Bug Debugger

4-6 MVME166 Single Board Computer Installation Guide

4

Note

In commands with RANGE specified as ADDR DEL ADDR,
and with size option W or L chosen, data at the second
(ending) address is acted on only if the second address is a
proper boundary for a word or longword, respectively.

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are used to
simplify the debugging of relocatable and position-independent modules.
The listing files in these types of programs usually start at an address
(normally 0) that is not the one at which they are loaded, so it is harder to
correlate addresses in the listing with addresses in the loaded program. The
offset registers solve this problem by taking into account this difference and
forcing the display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping ranges. The
range for each offset register is set by two addresses: base and top. Specifying
the base and top addresses for an offset register sets its range. In the event that
an address falls in two or more offset registers’ ranges, the one that yields the
least offset is chosen.

Note

Relative addresses are limited to 1MB (5 digits), regardless
of the range of the closest offset register.

Entering Debugger Command Lines

MVME166IG/D2 4-7

4

Example: A portion of the listing file of an assembled, relocatable
module is shown below:

 1
 2 *
 3 * MOVE STRING SUBROUTINE
 4 *
 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)
 6 0 00000004 4280 CLR.L D0
 7 0 00000006 1018 MOVE.B (A0)+,D0
 8 0 00000008 5340 SUBQ.W #1,D0
 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+
 10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP
 11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
 12 0 00000014 4E75 RTS
 13
 14 END
 ****** TOTAL ERRORS 0——
 ****** TOTAL WARNINGS 0——

The above program was loaded at address $0001327C.

The disassembled code is shown next:

166Bug> MD 1327C;DI
0001327C 48E78080 MOVEM.L D0/A0,—(A7)
00013280 4280 CLR.L D0
00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (A0)+,(A1)+
00013288 51C8FFFC DBF D0,$13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS
166Bug>

Using the 166Bug Debugger

4-8 MVME166 Single Board Computer Installation Guide

4

By using one of the offset registers, the disassembled code addresses can be
made to match the listing file addresses as follows:

166Bug>OF R0
R0 =00000000 00000000? 1327C. <CR>
166Bug>MD 0+R0;DI <CR>
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
166Bug>

For additional information about the offset registers, refer to the Debugging
Package for Motorola 68K CISC CPUs User’s Manual.

Port Numbers

Some 166Bug commands give you the option to choose the port to be used to
input or output. Valid port numbers which may be used for these commands
are as follows:

1. MVME166 EIA-232-D Debug (Terminal Port 0 or 00) (PORT 1 on the
MVME166 J9 connector). Sometimes known as the "console port", it is
used for interactive user input/output by default.

2. MVME166 EIA-232-D (Terminal Port 1 or 01) (PORT 2 on the MVME166 J9
connector). Sometimes known as the "host port", this is the default for
downloading, uploading, concurrent mode, and transparent modes.

Note

These logical port numbers (0 and 1) are shown in the
pinouts of the MVME166 module as "SERIAL PORT 1" and
"SERIAL PORT 2", respectively. Physically, they are all part
of connector J9.

Entering and Debugging Programs

MVME166IG/D2 4-9

4

Entering and Debugging Programs
There are various ways to enter a user program into system memory for
execution. One way is to create the program using the Memory Modify (MM)
command with the assembler/disassembler option. You enter the program
one source line at a time. After each source line is entered, it is assembled and
the object code is loaded to memory. Refer to the Debugging Package for
Motorola 68K CISC CPUs User’s Manual for complete details of the 166Bug
Assembler/Disassembler.

Another way to enter a program is to download an object file from a host
system. The program must be in S-record format (described in the Debugging
Package for Motorola 68K CISC CPUs User’s Manual) and may have been
assembled or compiled on the host system. Alternately, the program may
have been previously created using the 166Bug MM command as outlined
above and stored to the host using the Dump (DU) command. A
communication link must exist between the host system and the MVME166
port 1. (Hardware configuration details are in the section on Installation and
Startup in Chapter 3.) The file is downloaded from the host to MVME166
memory by the Load (LO) command.

Another way is by reading in the program from disk, using one of the disk
commands (BO, BH, IOP). Once the object code has been loaded into
memory, you can set breakpoints if desired and run the code or trace through
it.

Yet another way is via the network, using one of the network disk commands
(NBO, NBH, NIOP).

Calling System Utilities from User Programs
A convenient way of doing character input/output and many other useful
operations has been provided so that you do not have to write these routines
into the target code. You can access various 166Bug routines via one of the
MC68040 TRAP instructions, using vector #15. Refer to the Debugging Package
for Motorola 68K CISC CPUs User’s Manual for details on the various TRAP #15
utilities available and how to invoke them from within a user program.

Preserving the Debugger Operating Environment
This section explains how to avoid contaminating the operating environment
of the debugger. 166Bug uses certain of the MVME166 onboard resources and
also offboard system memory to contain temporary variables, exception
vectors, etc. If you disturb resources upon which 166Bug depends, then the
debugger may function unreliably or not at all.

Using the 166Bug Debugger

4-10 MVME166 Single Board Computer Installation Guide

4

If your application enables translation through the Memory Management
Units (MMUs), and if your application utilizes resources of the debugger (e.g.,
system calls), your application must create the necessary translation tables for
the debugger to have access to its various resources. The debugger honors the
enabling of the MMUs; it does not disable translation.

166Bug Vector Table and Workspace

As described in the Memory Requirements section in Chapter 3, 166Bug needs
64KB of read/write memory to operate. The 166Bug reserves a 1024-byte area
for a user program vector table area and then allocates another 1024-byte area
and builds an exception vector table for the debugger itself to use. Next,
166Bug reserves space for static variables and initializes these static variables
to predefined default values. After the static variables, 166Bug allocates space
for the system stack, then initializes the system stack pointer to the top of this
area.

With the exception of the first 1024-byte vector table area, you must be
extremely careful not to use the above-mentioned memory areas for other
purposes. You should refer to the Memory Requirements section in Chapter 3 to
determine how to dictate the location of the reserved memory areas. If, for
example, your program inadvertently wrote over the static variable area
containing the serial communication parameters, these parameters would be
lost, resulting in a loss of communication with the system console terminal. If
your program corrupts the system stack, then an incorrect value may be
loaded into the processor Program Counter (PC), causing a system crash.

Hardware Functions

The only hardware resources used by the debugger are the EIA-232-D ports,
which are initialized to interface to the debug terminal. If these ports are
reprogrammed, the terminal characteristics must be modified to suit, or the
ports should be restored to the debugger-set characteristics prior to reinvoking
the debugger.

Preserving the Debugger Operating Environment

MVME166IG/D2 4-11

4

Exception Vectors Used by 166Bug

The exception vectors used by the debugger are listed below. These vectors
must reside at the specified offsets in the target program’s vector table for the
associated debugger facilities (breakpoints, trace mode, etc) to operate.

NOTE: These depend on what the Vector Base Register (VBR) is set to
in the VMEchip2.

When the debugger handles one of the exceptions listed in Table 4-2, the target
stack pointer is left pointing past the bottom of the exception stack frame
created; that is, it reflects the system stack pointer values just before the
exception occurred. In this way, the operation of the debugger facility
(through an exception) is transparent to users.

Table 4-2. Exception Vectors Used by 166Bug

Vector
Offset

Exception 166Bug Facility

$10 Illegal instruction Breakpoints (used by GO, GN, GT)

$24 Trace Trace operations (such as T, TC, TT)

$80-$B8 TRAP #0 - #14 Used internally

$BC TRAP #15 System calls

$NOTE Level 7 interrupt ABORT pushbutton

$NOTE Level 7 interrupt AC Fail

$DC FP Unimplemented Data Type Software emulation and data type
conversion of floating point data.

Using the 166Bug Debugger

4-12 MVME166 Single Board Computer Installation Guide

4

Example: Trace one instruction using debugger.

166Bug>RD
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010000 203C0000 0001 MOVE.L #$1,D0
166Bug>T
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010006 D280 ADD.L D0,D1
166Bug>

Notice that the value of the target stack pointer register (A7) has not changed
even though a trace exception has taken place. Your program may either use
the exception vector table provided by 166Bug or it may create a separate
exception vector table of its own. The two following sections detail these two
methods.

Using 166Bug Target Vector Table

The 166Bug initializes and maintains a vector table area for target programs.
A target program is any program started by the bug, either manually with GO
or TR type commands or automatically with the BO command. The start
address of this target vector table area is the base address of the debugger
memory. This address is loaded into the target-state VBR at power up and
cold-start reset and can be observed by using the RD command to display the
target-state registers immediately after power up.

Preserving the Debugger Operating Environment

MVME166IG/D2 4-13

4

The 166Bug initializes the target vector table with the debugger vectors listed
in Table 4-2 and fills the other vector locations with the address of a
generalized exception handler (refer to the 166Bug Generalized Exception
Handler section in this chapter). The target program may take over as many
vectors as desired by simply writing its own exception vectors into the table.
If the vector locations listed in Table 4-2 are overwritten then the
accompanying debugger functions are lost.

The 166Bug maintains a separate vector table for its own use. In general, you
do not have to be aware of the existence of the debugger vector table. It is
completely transparent and you should never make any modifications to the
vectors contained in it.

Creating a New Vector Table

Your program may create a separate vector table in memory to contain its
exception vectors. If this is done, the program must change the value of the
VBR to point at the new vector table. In order to use the debugger facilities you
can copy the proper vectors from the 166Bug vector table into the
corresponding vector locations in your program vector table.

The vector for the 166Bug generalized exception handler (described in detail
in the 166Bug Generalized Exception Handler section in this chapter) may be
copied from offset $08 (bus error vector) in the target vector table to all
locations in your program vector table where a separate exception handler is
not used. This provides diagnostic support in the event that your program is
stopped by an unexpected exception. The generalized exception handler gives
a formatted display of the target registers and identifies the type of the
exception.

Using the 166Bug Debugger

4-14 MVME166 Single Board Computer Installation Guide

4

The following is an example of a routine which builds a separate vector table
and then moves the VBR to point at it:

*
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR.
 LEA $10000,A1 New vectors at $10000.
 MOVE.L $80(A0),D0 Get generalized exception vector.
 MOVE.W $3FC,D1 Load count (all vectors).
LOOP MOVE.L D0,(A1,D1) Store generalized exception vector.
 SUBQ.W #4,D1
 BNE.B LOOP Initialize entire vector table.
 MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
 MOVE.L $24(A0),$24(A1) Copy trace vector.
 MOVE.L $BC(A0),$BC(A1) Copy system call vector.
 LEA.L COPROCC(PC),A2 Get your exception vector.
 MOVE.L A2,$2C(A1) Install as F-Line handler.
 MOVEC.L A1,VBR Change VBR to new table.
 RTS
 END

It may turn out that your program uses one or more of the exception vectors
that are required for debugger operation. Debugger facilities may still be
used, however, if your exception handler can determine when to handle the
exception itself and when to pass the exception to the debugger.

When an exception occurs which you want to pass on to the debugger; i.e.,
ABORT, your exception handler must read the vector offset from the format
word of the exception stack frame. This offset is added to the address of the
166Bug target program vector table (which your program saved), yielding the
address of the 166Bug exception vector. The program then jumps to the
address stored at this vector location, which is the address of the 166Bug
exception handler.

Your program must make sure that there is an exception stack frame in the
stack and that it is exactly the same as the processor would have created for the
particular exception before jumping to the address of the exception handler.

Preserving the Debugger Operating Environment

MVME166IG/D2 4-15

4

The following is an example of an exception handler which can pass an
exception along to the debugger:

*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.
 LINK A6,#0 Frame pointer for accessing PC space.
 MOVEM.L A0-A5/D0-D7,-(SP) Save registers.
 :
 : decide here if your code handles exception, if so, branch...
 :
 MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR.
 MOVE.W 14(A6),D0 Get the vector offset from stack frame.
 AND.W #$0FFF,D0 Mask off the format information.
 MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler.
 MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.
 UNLK A6
 RTS Put addr of exc handler into PC and go.

166Bug Generalized Exception Handler

The 166Bug has a generalized exception handler which it uses to handle all of
the exceptions not listed in Table 4-2. For all these exceptions, the target stack
pointer is left pointing to the top of the exception stack frame created. In this
way, if an unexpected exception occurs during execution of your code, you are
presented with the exception stack frame to help determine the cause of the
exception. The following example illustrates this:

Example: Bus error at address $F00000. It is assumed for this example
that an access of memory location $F00000 initiates bus error
exception processing.

Using the 166Bug Debugger

4-16 MVME166 Single Board Computer Installation Guide

4

166Bug>RD
PC =00010000 SR =2708=TR:OFF_S._7_.N... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000002 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010000 203900F0 0000 MOVE.L ($F00000).L,D0
166Bug>T

Exception: Access Fault (Local Off Board)
PC =FF839154 SR =2704
Format/Vector =7008
SSW =0145 Fault Address =00F00000 Effective Address =0000D4E8
PC =00010000 SR =2708=TR:OFF_S._7_.N... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000002 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFC0
00010000 203900F0 0000 MOVE.L ($F00000).L,D0
166Bug>

Notice that the target stack pointer is different. The target stack pointer now
points to the last value of the exception stack frame that was stacked. The
exception stack frame may now be examined using the MD command.

166Bug>MD (A7):&30
0000FFC0 2708 0001 0000 7008 0000 FFFC 0105 0005 ’.....p.........
0000FFD0 0005 0005 00F0 0000 0000 0A64 0000 FFF4 d....
0000FFE0 00F0 0000 FFFF FFFF 00F0 0000 FFFF FFFF
0000FFF0 2708 0001 A708 0001 0000 0000 ’...........
166Bug>

Floating Point Support

MVME166IG/D2 4-17

4

Floating Point Support
The floating point unit (FPU) of the MC68040 microprocessor chip is
supported in 166Bug. For MVME166Bug, the commands MD, MM, RM, and
RS have been extended to allow display and modification of floating point
data in registers and in memory. Floating point instructions can be
assembled/disassembled with the DI option of the MD and MM commands.

Valid data types that can be used when modifying a floating point data
register or a floating point memory location:

When entering data in single, double, extended precision, or packed decimal
format, the following rules must be observed:

1. The sign field is the first field and is a binary field.

2. The exponent field is the second field and is a hexadecimal field.

3. The mantissa field is the last field and is a hexadecimal field.

4. The sign field, the exponent field, and at least the first digit of the mantissa
field must be present (any unspecified digits in the mantissa field are set
to zero).

5. Each field must be separated from adjacent fields by an underscore.

6. All the digit positions in the sign and exponent fields must be present.

Integer Data Types

12 Byte

1234 Word

12345678 Longword

Floating Point Data Types

1_FF_7FFFFF Single Precision Real Format

1_7FF_FFFFFFFFFFFFF Double Precision Real Format

1_7FFF_FFFFFFFFFFFFFFFF Extended Precision Real Format

1111_2103_123456789ABCDEF01 Packed Decimal Real Format

-3.12345678901234501_E+123 Scientific Notation Format (decimal)

Using the 166Bug Debugger

4-18 MVME166 Single Board Computer Installation Guide

4

Single Precision Real

This format would appear in memory as:

A single precision number takes 4 bytes in memory.

Double Precision Real

This format would appear in memory as:

A double precision number takes 8 bytes in memory.

Note

The single and double precision formats have an implied
integer bit (always 1).

Extended Precision Real

This format would appear in memory as:

An extended precision number takes 10 bytes in memory.

1-bit sign field (1 binary digit)

8-bit biased exponent field (2 hex digits. Bias = $7F)

23-bit fraction field (6 hex digits)

1-bit sign field (1 binary digit)

11-bit biased exponent field (3 hex digits. Bias = $3FF)

52-bit fraction field (13 hex digits)

1-bit sign field (1 binary digit)

15-bit biased exponent field (4 hex digits. Bias = $3FFF)

64-bit mantissa field (16 hex digits)

Floating Point Support

MVME166IG/D2 4-19

4

Packed Decimal Real

This format would appear in memory as:

A packed decimal number takes 12 bytes in memory.

Scientific Notation

This format provides a convenient way to enter and display a floating point
decimal number. Internally, the number is assembled into a packed decimal
number and then converted into a number of the specified data type.

Entering data in this format requires the following fields:

An optional sign bit (+ or -).
One decimal digit followed by a decimal point.
Up to 17 decimal digits (at least one must be entered).
An optional Exponent field that consists of:

An optional underscore.
The Exponent field identifier, letter "E".
An optional Exponent sign (+, -).
From 1 to 3 decimal digits.

For more information about the MC68040 floating point unit, refer to the
M68040 Microprocessor User’s Manual.

4-bit sign field (4 binary digits)

16-bit exponent field (4 hex digits)

68-bit mantissa field (17 hex digits)

Using the 166Bug Debugger

4-20 MVME166 Single Board Computer Installation Guide

4

The 166Bug Debugger Command Set
The 166Bug debugger commands are summarized in Table 4-3. The command
syntax is shown using the symbols explained earlier in this chapter. The
CNFG and ENV commands are explained in Appendix A. Controllers,
devices, and their LUNs are listed in Appendix B or Appendix C. All other
command details are explained in the MVME167Bug Debugging Package User’s
Manual.

Table 4-3. Debugger Commands

Command
Mnemonic Title

Command Line
Syntax

AB Automatic Bootstrap
Operating System

AB [;V]

NOAB No Autoboot NOAB

AS One Line Assembler AS ADDR

BC Block of Memory Compare BC RANGE DEL ADDR [; B|W|L]

BF Block of Memory Fill BF RANGE DEL data [DEL increment] [; B|W|L]

BH Bootstrap Operating
System and Halt

BH [DEL Controller LUN][DEL Device LUN][DEL String]

BI Block of Memory Initialize BI RANGE [;B|W|L]

BM Block of Memory Move BM RANGE DEL ADDR [; B|W|L]

BO Bootstrap Operating System BO [DEL Controller LUN][DEL Device LUN][DEL String]

BR Breakpoint Insert BR [ADDR[:COUNT]]

NOBR Breakpoint Delete NOBR [ADDR]

BS Block of Memory Search BS RANGE DEL TEXT [;B|W|L]
or BS RANGE DEL data [DEL mask] [;B|W|L [,N][,V]]

BV Block of Memory Verify BV RANGE DEL data [increment] [;B|W|L]

CM Concurrent Mode CM [[PORT][DEL ID-STRING][DEL BAUD]
[DEL PHONE-NUMBER]]|[;A]|[;H]

NOCM No Concurrent Mode NOCM

CNFG Configure Board
Information Block

CNFG [;[I][M]]

CS Checksum CS RANGE [;B|W|L]

DC Data Conversion DC EXP | ADDR [;[B][O][A]]

DMA DMA Block of Memory Move DMA RANGE DEL ADDR DEL VDIR DEL AM
 DEL BLK [;B|W|L]

DS One Line Disassembler DS ADDR [:COUNT | DEL ADDR]

DU Dump S-records DU [PORT]DEL RANGE [DEL TEXT][DEL ADDR]
[DEL OFFSET][;B|W|L]

ECHO Echo String ECHO [PORT]DEL{hexadecimal number} {’string’}

ENV Set Environment to
Bug/Operating System

ENV [;[D]]

GD Go Direct (Ignore Breakpoints) GD [ADDR]

The 166Bug Debugger Command Set

MVME166IG/D2 4-21

4

GN Go to Next Instruction GN

GO Go Execute User Program GO [ADDR]

GT Go to Temporary Breakpoint GT ADDR

HE Help HE [COMMAND]

IOC I/O Control for Disk IOC

IOI I/O Inquiry IOI [;[C|L]]

IOP I/O Physical (Direct Disk Access) IOP

IOT I/O "TEACH" for Configuring
Disk Controller

IOT [;[A][F][H][T]]

IRQM Interrupt Request Mask IRQM [MASK]

LO Load S-records from Host LO [n] [ADDR] [;X|C|T] [=text]

MA Macro Define/Display MA [NAME|;L]

NOMA Macro Delete NOMA [NAME]

MAE Macro Edit MAE name line# [string]

MAL Enable Macro Expansion Listing MAL

NOMAL Disable Macro Expansion Listing NOMAL

MAW Save Macros MAW [controller LUN][DEL[device LUN][DEL block #]]

MAR Load Macros MAR [controller LUN][DEL[device LUN][DEL block #]]

MD Memory Display MD[S] ADDR[:COUNT | ADDR]
 [; [B|W|L|S|D|X|P|DI]]

MENU Menu MENU

MM Memory Modify MM ADDR[;[[B|W|L|S|D|X|P][A][N]]|[DI]]

MMD Memory Map Diagnostic MMD RANGE DEL increment[;B|W|L]

MS Memory Set MS ADDR {Hexadecimal number} {’string’}

MW Memory Write MW ADDR DATA [;B|W|L]

NAB Automatic Network Boot
Operating System

NAB

NBH Network Boot Operating System
and Halt

NBH [Controller LUN][Device LUN][Client IP Address]

[Server IP Address][String]

NBO Network Boot Operating System NBO [Controller LUN][Device LUN][Client IP Address]
[Server IP Address][String]

NIOC Network I/O Control NIOC

NIOP Network I/O Physical NIOP

NIOT Network I/O Teach NIOT [;[H]|[A]]

NPING Network Ping NPING Controller-LUN Device-LUN Source-IP
Destination-IP [N-Packets]

OF Offset Registers Display/Modify OF [Rn[;A]]

PA Printer Attach PA [n]

NOPA Printer Detach NOPA [n]

Table 4-3. Debugger Commands (Continued)

Command
Mnemonic Title

Command Line
Syntax

Using the 166Bug Debugger

4-22 MVME166 Single Board Computer Installation Guide

4

PF Port Format PF [PORT]

NOPF Port Detach NOPF [PORT]

PFLASH Program FLASH Memory PFLASH SSADDR SEADDR DSADDR [IEADDR][;[A|R][X]]
or PFLASH SSADDR:COUNT DSADDR [IEADDR]

[;[B|W|L] [A|R] [X]]

PS Put RTC Into Power Save Mode
for Storage

PS

RB ROMboot Enable RB[;V]

NORB ROMboot Disable NORB

RD Register Display RD {[+|-|=][DNAME][/]} {[+|-|=][REG1[-REG2]][/]} [;E]

REMOTE Connect the Remote Modem to
CSO

REMOTE

RESET Cold/Warm Reset RESET

RL Read Loop RL ADDR;[B|W|L]

RM Register Modify RM [REG] [;[S|D]]

RS Register Set RS REG [DEL EXP|DEL ADDR][;[S|D]]

SD Switch Directories SD

SET Set Time and Date SET mmddyyhhmm
or SET n;C

SYM Symbol Table Attach SYM [ADDR]

NOSYM Symbol Table Detach NOSYM

SYMS Symbol Table Display/Search SYMS [symbol-name]|[;S]

T Trace T [COUNT]

TA Terminal Attach TA [port]

TC Trace on Change of Control Flow TC [count]

TIME Display Time and Date TIME [;[C|L|O]]

TM Transparent Mode TM [n] [ESCAPE]

TT Trace to Temporary Breakpoint TT ADDR

VE Verify S-records Against Memory VE [n] [ADDR] [;[X][C]] =text]

VER Display Revision/Version VER [; E]

WL Write Loop WL ADDR:DATA;[B|W|L]

Table 4-3. Debugger Commands (Continued)

Command
Mnemonic Title

Command Line
Syntax

MVME166IG/D2A-1

ACONFIGURE AND
ENVIRONMENT COMMANDS

Configure Board Information Block
CNFG [;[I][M]]

This command is used to display and configure the board information block.
This block is resident within the Non-Volatile RAM (NVRAM). Refer to the
MVME166 Single Board Computer User’s Manual for the actual location. The
information block contains various elements detailing specific operation
parameters of the hardware. The MVME166 Single Board Computer User’s
Manual describes the elements within the board information block, and lists
the size and logical offset of each element. The CNFG command does not
describe the elements and their use. The board information block contents are
checksummed for validation purposes. This checksum is the last element of
the block.

Example: to display the current contents of the board information block.

166-Bug>cnfg
Board (PWA) Serial Number = "000000061050"

Board Identifier = "MVME166-11 "

Artwork (PWA) Identifier = "01-W3834B01B "

MPU Clock Speed = "3300"

Ethernet Address = 08003E20A867

Local SCSI Identifier = "07"

Optional Board 1 Artwork (PWA) Identifier = " "

Optional Board 1 (PWA) Serial Number = " "

Optional Board 2 Artwork (PWA) Identifier = " "

Optional Board 2 (PWA) Serial Number = " "

166-Bug>

Note that the parameters that are quoted are left-justified character (ASCII)
strings padded with space characters, and the quotes (") are displayed to
indicate the size of the string. Parameters that are not quoted are considered
data strings, and data strings are right-justified. The data strings are padded
with zeroes if the length is not met.

In the event of corruption of the board information block, the command
displays a question mark "?" for nondisplayable characters. A warning
message (WARNING: Board Information Block Checksum Error) is also
displayed in the event of a checksum failure.

Configure and Environment Commands

A-2 MVME166 Single Board Computer Installation Guide

A

Using the I option initializes the unused area of the board information block
to zero.

Modification is permitted by using the M option of the command. At the end
of the modification session, you are prompted for the update to Non-Volatile
RAM (NVRAM). A Y response must be made for the update to occur; any
other response terminates the update (disregards all changes). The update
also recalculates the checksum.

Be cautious when modifying parameters. Some of these parameters are set up
by the factory, and correct board operation relies upon these parameters.

Once modification/update is complete, you can now display the current
contents as described earlier.

Set Environment to Bug/Operating System
ENV [;[D]]

The ENV command allows you to interactively view/configure all Bug
operational parameters that are kept in Battery Backed Up RAM (BBRAM),
also known as Non-Volatile RAM (NVRAM). The operational parameters are
saved in NVRAM and used whenever power is lost.

Any time the Bug uses a parameter from NVRAM, the NVRAM contents are
first tested by checksum to insure the integrity of the NVRAM contents. In the
instance of BBRAM checksum failure, certain default values are assumed as
stated below.

The bug operational parameters (which are kept in NVRAM) are not
initialized automatically on power up/warm reset. It is up to the Bug user to
invoke the ENV command. Once the ENV command is invoked and executed
without error, Bug default and/or user parameters are loaded into NVRAM
along with checksum data. If any of the operational parameters have been
modified, these new parameters will not be in effect until a reset/powerup
condition.

If the ENV command is invoked with no options on the command line, you are
prompted to configure all operational parameters. If the ENV command is
invoked with the option D, ROM defaults will be loaded into NVRAM.

Set Environment to Bug/Operating System

MVME166IG/D2 A-3

A

The parameters to be configured are listed in the following table:

Table A-1. ENV Command Parameters

ENV Parameter and Options Default Meaning of Default

Bug or System environment [B/S] S System mode

Field Service Menu Enable [Y/N] Y Display field service menu.

Remote Start Method Switch [G/M/B/N] B Use both the Global Control and
Status Register (GCSR) in the
VMEchip2, and the
Multiprocessor Control Register
(MPCR) in shared RAM,
methods to pass and start
execution of cross-loaded
program.

Probe System for Supported I/O Controllers [Y/N] Y Accesses will be made to
VMEbus to determine presence
of supported controllers.

Negate VMEbus SYSFAIL* Always [Y/N] N Negate VMEbus SYSFAIL after
successful completion or
entrance into the bug command
monitor.

Local SCSI Bus Reset on Debugger Startup [Y/N] N Local SCSI bus is not reset on
debugger startup.

Local SCSI Bus Negotiations Type [A/S/N] A Asynchronous

Ignore CFGA Block on a Hard Disk Boot [Y/N] Y Enable the ignorance of the
Configuration Area (CFGA)
Block (hard disk only)

Auto Boot Enable [Y/N] N Auto Boot function is disabled.

Auto Boot at power-up only [Y/N] Y Auto Boot is attempted at power
up reset only.

Auto Boot Controller LUN 00 LUN of a disk/tape controller
module currently supported by
the Bug. Default is $0.

Auto Boot Device LUN 00 LUN of a disk/tape device
currently supported by the Bug.
Default is $0.

Auto Boot Abort Delay 15 This is the time in seconds that
the Auto Boot sequence will
delay before starting the boot.
The purpose for the delay is to
allow you the option of stopping
the boot by use of the Break key.
The time value is from 0 through
255 seconds.

Configure and Environment Commands

A-4 MVME166 Single Board Computer Installation Guide

A

Auto Boot Default String [Y(NULL String)/(String)] You may specify a string
(filename) which is passed on to
the code being booted.
Maximum length is 16
characters. Default is the null
string.

ROM Boot Enable [Y/N] N ROMboot function is disabled.

ROM Boot at power-up only [Y/N] Y ROMboot is attempted at power
up only.

ROM Boot Enable search of VMEbus [Y/N] N VMEbus address space will not
be accessed by ROMboot.

ROM Boot Abort Delay 00 This is the time in seconds that
the ROMboot sequence will
delay before starting the boot.
The purpose for the delay is to
allow you the option of stopping
the boot by use of the Break key.
The time value is from 0 through
255 seconds.

ROM Boot Direct Starting Address FF800000 First location tested when the
Bug searches for a ROMboot
Module.

ROM Boot Direct Ending Address FFBFFFFC Last location tested when the
Bug searches for a ROMboot
Module.

Network Auto Boot Enable [Y/N] N Network Auto Boot function is
disabled.

Network Auto Boot at power-up only [Y/N] Y Network Auto Boot is attempted
at power up reset only.

Network Auto Boot Controller LUN 00 LUN of a disk/tape controller
module currently supported by
the Bug. Default is $0.

Network Auto Boot Device LUN 00 LUN of a disk/tape device
currently supported by the Bug.
Default is $0.

Network Auto Boot Abort Delay 5 This is the time in seconds that
the Network Boot sequence will
delay before starting the boot.
The purpose for the delay is to
allow you the option of stopping
the boot by use of the Break key.
The time value is from 0 through
255 seconds.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-5

A

Network Autoboot Configuration Parameters Pointer
(NVRAM)

00000000 This is the address where the
network interface configuration
parameters are to be
saved/retained in NVRAM;
these parameters are the
necessary parameters to perform
an unattended network boot.

Memory Search Starting Address 00000000 Where the Bug begins to search
for a work page (a 64KB block of
memory) to use for vector table,
stack, and variables. This must
be a multiple of the debugger
work page, modulo $10000
(64KB). In a multi-166
environment, each MVME166
board could be set to start its
work page at a unique address
to allow multiple debuggers to
operate simultaneously.

Memory Search Ending Address 02000000 Top limit of the Bug’s search for
a work page. If a contiguous
block of memory, 64KB in size, is
not found in the range specified
by Memory Search Starting
Address and Memory Search
Ending Address parameters,
then the bug will place its work
page in the onboard static RAM
on the MVME166. Default
Memory Search Ending Address
is the calculated size of local
memory.

Memory Search Increment Size 00010000 This multi-CPU feature is used
to offset the location of the Bug
work page. This must be a
multiple of the debugger work
page, modulo $10000 (64KB).
Typically, Memory Search
Increment Size is the product of
CPU number and size of the Bug
work page. Example: first CPU
$0 (0 x $10000), second CPU
$10000 (1 x $10000), etc.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-6 MVME166 Single Board Computer Installation Guide

A

Memory Search Delay Enable [Y/N] N There will be no delay before the
Bug begins its search for a work
page.

Memory Search Delay Address FFFFCE0F Default address is $FFFFCE0F.
This is the MVME166 GCSR
GPCSR0 as accessed through
VMEbus A16 space and assumes
the MVME166 GRPAD (group
address) and BDAD (board
address within group) switches
are set to "on". This byte-wide
value is initialized to $FF by
MVME166 hardware after a
System or Power-on Reset. In a
multi-166 environment, where
the work pages of several Bugs
are to reside in the memory of
the primary (first) MVME166,
the non-primary CPUs will wait
for the data at the Memory
Search Delay Address to be set
to $00, $01, or $02 (refer to the
Memory Requirements section in
Chapter 3 for the definition of
these values) before attempting
to locate their work page in the
memory of the primary CPU.

Memory Size Enable [Y/N] Y Memory will be sized for Self
Test diagnostics.

Memory Size Starting Address 00000000 Default Starting Address is $0.

Memory Size Ending Address 02000000 Default Ending Address is the
calculated size of local
memory.

Base Address of Local Memory 00000000 Beginning address of Local
Memory. It must be a multiple
of the Local Memory board size,
starting with 0. The Bug will set
up hardware address decoders
so that Local Memory resides as
one contiguous block at this
address. Default is $0.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-7

A

Size of Local Memory Board #0
Size of Local Memory Board #1

02000000
00000000

You are prompted twice, once
for each possible MVME166
memory board. Default is the
calculated size of the memory
board.

Slave address decoders setup. The slave address decoders are use to allow another VMEbus master
to access a local resource of the MVME166. There are two slave address decoders set. They are set
up as follows.

Slave Enable #1 [Y/N] Y Yes, Setup and enable the Slave
Address Decoder #1.

Slave Starting Address #1 00000000 Base address of the local
resource that is accessible by the
VMEbus. Default is the base of
local memory, $0.

Slave Ending Address #1 01FFFFFF Ending address of the local
resource that is accessible by the
VMEbus. Default is the end of
calculated memory.

Slave Address Translation Address #1 00000000 This register will allow the
VMEbus address and the local
address to be different. The
value in this register is the base
address of local resource that is
associated with the starting and
ending address selection from
the previous questions. Default
is 0.

Slave Address Translation Select #1 00000000 This register defines which bits
of the address are significant. A
logical one "1" indicates
significant address bits, logical
zero "0" is non-significant.
Default is 0.

Slave Control #1 03FF Defines the access restriction for
the address space defined with
this slave address decoder.
Default is $03FF.

Slave Enable #2 [Y/N] Y Yes, Setup and enable the Slave
Address Decoder #2.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-8 MVME166 Single Board Computer Installation Guide

A

Slave Starting Address #2 FFE00000 Base address of the local
resource that is accessible by the
VMEbus. Default is the base
address of static RAM,
$FFE00000.

Slave Ending Address #2 FFE1FFFF Ending address of the local
resource that is accessible by the
VMEbus. Default is the end of
static RAM, $FFE1FFFF.

Slave Address Translation Address #2 00000000 Works the same as Slave
Address Translation Address #1.
Default is 0.

Slave Address Translation Select #2 00000000 Works the same as Slave
Address Translation Select #1.
Default is 0.

Slave Control #2 01EF Defines the access restriction for
the address space defined with
this slave address decoder.
Default is $01EF.

Master Enable #1 [Y/N] Y Yes, Setup and enable the Master
Address Decoder #1.

Master Starting Address #1 02000000 Base address of the VMEbus
resource that is accessible from
the local bus. Default is the end
of calculated local memory,
unless memory is less than
16MB, then this register will
always be set to 01000000.

Master Ending Address #1 EFFFFFFF Ending address of the VMEbus
resource that is accessible from
the local bus. Default is the end
of calculated memory.

Master Control #1 0D Defines the access characteristics
for the address space defined
with this master address
decoder. Default is $0D.

Master Enable #2 [Y/N] N Do not setup and enable the
Master Address Decoder #2.

Master Starting Address #2 00000000 Base address of the VMEbus
resource that is accessible from
the local bus. Default is
$00000000.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-9

A

Master Ending Address #2 00000000 Ending address of the VMEbus
resource that is accessible from
the local bus. Default is
$00000000.

Master Control #2 00 Defines the access characteristics
for the address space defined
with this master address
decoder. Default is $00.

Master Enable #3 [Y/N] N Yes, setup and enable the Master
Address Decoder #3. This is the
default if the board contains less
than 16MB of calculated RAM.

Do not set up and enable the
Master Address Decoder #3.
This is the default for boards
containing at least 16MB of
calculated RAM.

Master Starting Address #3 00000000 Base address of the VMEbus
resource that is accessible from
the local bus. If enabled, the
value is calculated as one less
than the calculated size of
memory. If not enabled, the
default is $00000000.

Master Ending Address #3 00000000 Ending address of the VMEbus
resource that is accessible from
the local bus. If enabled, the
default is $00FFFFFF, otherwise
$00000000.

Master Control #3 00 Defines the access characteristics
for the address space defined
with this master address
decoder. If enabled, the default
is $3D, otherwise $00.

Master Enable #4 [Y/N] N Do not set up and enable the
Master Address Decoder #4.

Master Starting Address #4 00000000 Base address of the VMEbus
resource that is accessible from
the local bus. Default is $0.

Master Ending Address #4 00000000 Ending address of the VMEbus
resource that is accessible from
the local bus. Default is $0.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-10 MVME166 Single Board Computer Installation Guide

A

Master Address Translation Address #4 00000000 This register will allow the
VMEbus address and the local
address to be different. The
value in this register is the base
address of VMEbus resource that
is associated with the starting
and ending address selections
from the previous questions.
Default is 0.

Master Address Translation Select #4 00000000 This register defines which bits
of the address are significant. A
logical one "1" indicates
significant address bits, logical
zero "0" is non-significant.
Default is 0.

Master Control #4 00 Defines the access characteristics
for the address space defined
with this master address
decoder.
Default is $00.

Short I/O (VMEbus A16) Enable [Y/N] Y Yes, Enable the Short I/O
Address Decoder.

Short I/O (VMEbus A16) Control 01 Defines the access characteristics
for the address space defined
with the Short I/O address
decoder.
Default is $01.

F-Page (VMEbus A24) Enable [Y/N] Y Yes, Enable the F-Page Address
Decoder.

F-Page (VMEbus A24) Control 02 Defines the access characteristics
for the address space defined
with the F-Page address decoder.
Default is $02.

ROM Speed Bank A Code
ROM Speed Bank B Code

04
04

Used to set up the ROM speed.
Default $04 = 145 ns.

Static RAM Speed Code 00 Used to set up the SRAM speed.
Default $00 = 115 ns.

PCC2 Vector Base
VMEC2 Vector Base #1
VMEC2 Vector Base #2

05
06
07

Base interrupt vector for the
component specified. Default:
PCCchip2 = $05,
VMEchip2 Vector 1 = $06,
VMEchip2 Vector 2 = $07.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-11

A

VMEC2 GCSR Group Base Address CC Specifies the group address
($FFFFXX00) in Short I/O for
this board. Default = $CC.

VMEC2 GCSR Board Base Address 00 Specifies the base address
($FFFFCCXX) in Short I/O for
this board. Default = $00.

VMEbus Global Time Out Code 01 This controls the VMEbus
timeout when systems
controller. Default $01 = 64 µs.

Local Bus Time Out Code 00 This controls the local bus
timeout. Default $00 = 8 µs.

VMEbus Access Time Out Code 02 This controls the local bus to
VMEbus access timeout. Default
$02 = 32 ms.

The special 166Bug parameters that can be configured using ENV are as follows.

VSBC2 Installed [Y/N] Y This is set depending on the
existence of a VSBchip2 on the
board. It can be overridden with
this ENV option.

VSBC2 Interrupt Vector Base 0E Vector passed back to the VSB
master during the Status/ID
transfer phase of an interrupt-
acknowledge cycle, if the
VSBchip2 wins interrupt
arbitration. Default = 0E.

VSBC2 Local Interrupt Vector Base 00 The value here is part of the
interrupt vector supplied on the
local bus during an interrupt
acknowledge cycle. The lower 4
bits are reserved (and are read-
only, as zeroes). Bits 4 through 7
are programmable. Default = 00.

VSBC2 Slave Starting Address #1 00000000 Beginning address of an address
range for the first VSB to local
bus map decoder. Only the
upper 16 bits of this field are
significant (or used). Default =
00000000.

VSBC2 Slave Ending Address #1 00000000 Ending address of an address
range for the first VSB to local
bus map decoder. Only the
upper 16 bits of this field are
significant (or used). Default =
00000000.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-12 MVME166 Single Board Computer Installation Guide

A

VSBC2 Slave Address Offset #1 00000000 Address offset for the first VSB
to local bus map decoder. The
upper 16 bits of this field will be
added to the upper 16 bits of the
VSB address received. This sum
is then the address driven onto
the local bus address lines.
Default = 00000000.

VSBC2 Slave Attributes #1 0400 The bits in this register control
various aspects of how the first
VSB to local bus map decoder
will operate. Consult the
VSBchip2 register definition in
the MVME166 programmer’s
reference guide for an
explanation of each bit. Default
= 0400.

VSBC2 Slave Starting Address #2 00000000 Beginning address of an address
range for the second VSB to local
bus map decoder. Only the
upper 16 bits of this field are
significant (or used). Default =
00000000.

VSBC2 Slave Ending Address #2 00000000 Ending address of an address
range for the second VSB to local
bus map decoder. Only the
upper 16 bits of this field are
significant (or used). Default =
00000000.

VSBC2 Slave Address Offset #2 00000000 Address offset for the second
VSB to local bus map decoder.
The upper 16 bits of this field
will be added to the upper 16
bits of the VSB address received.
This sum is then the address
driven onto the local bus address
lines. Default = 00000000.

VSBC2 Slave Attributes #2 0400 The bits in this register control
various aspects of how the
second VSB to local bus map
decoder will operate. Consult
the VSBchip2 register definition
in the MVME166 programmer’s
reference guide for an
explanation of each bit. Default
= 0400.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-13

A

VSBC2 Requester Control 01000000 The bits in this register control
aspects of the local board’s
access of the VSB. Control and
status bits are available to
request control of the bus (and
determine when control has
been obtained), determine
whether the requester uses
"fairness" mode in arbitrating for
the bus, whether to release the
bus when done, and configure
the VSB requester arbitration ID
value. Definition of the register
contents can be found in the
MVME166 programmer’s
reference guide. Default =
01000000.

VSBC2 Timer Control Register 1000 The bits in this register control
various timers and their timeout
periods, for VSB accesses.
Definition of the register
contents can be found in the
MVME166 programmer’s
reference guide. Default = 1000.

VSBC2 Master Starting Address #1 00000000 Beginning address of an address
range for the local bus to VSB
map decoder #1. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Ending Address #1 00000000 Ending address of an address
range for the local bus to VSB
map decoder #1. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Address Offset #1 00000000 Address offset for the local bus
to VSB map decoder #1. The
upper 16 bits of this field will be
added to the upper 16 bits of the
local bus address received. This
sum is then the address driven
onto the VSB address lines.
Default = 00000000.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-14 MVME166 Single Board Computer Installation Guide

A

VSBC2 Master Attributes #1 0030 The bits in this register control
various aspects of how the local
bus to VSB map decoder #1 will
operate. Consult the VSBchip2
register definition in the
MVME166 programmer’s
reference guide for a detailed
explanation of each bit. Default
= 0030.

VSBC2 Master Starting Address #2 00000000 Beginning address of an address
range for the local bus to VSB
map decoder #2. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Ending Address #2 00000000 Ending address of an address
range for the local bus to VSB
map decoder #2. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Address Offset #2 00000000 Address offset for the local bus
to VSB map decoder #2. The
upper 16 bits of this field will be
added to the upper 16 bits of the
local bus address received. This
sum is then the address driven
onto the VSB address lines.
Default = 00000000.

VSBC2 Master Attributes #2 0030 The bits in this register control
various aspects of how the local
bus to VSB map decoder #2 will
operate. Consult the VSBchip2
register definition in the
MVME166 programmer’s
reference guide for a detailed
explanation of each bit. Default
= 0030.

VSBC2 Master Starting Address #3 00000000 Beginning address of an address
range for the local bus to VSB
map decoder #3. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Set Environment to Bug/Operating System

MVME166IG/D2 A-15

A

VSBC2 Master Ending Address #3 00000000 Ending address of an address
range for the local bus to VSB
map decoder #3. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Address Offset #3 00000000 Address offset for the local bus
to VSB map decoder #3. The
upper 16 bits of this field will be
added to the upper 16 bits of the
local bus address received. This
sum is then the address driven
onto the VSB address lines.
Default = 00000000.

VSBC2 Master Attributes #3 0030 The bits in this register control
various aspects of how the local
bus to VSB map decoder #3 will
operate. Consult the VSBchip2
register definition in the
MVME166 programmer’s
reference guide for a detailed
explanation of each bit. Default
= 0030.

VSBC2 Master Starting Address #4 00000000 Beginning address of an address
range for the local bus to VSB
map decoder #4. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Ending Address #4 00000000 Ending address of an address
range for the local bus to VSB
map decoder #4. Only the upper
16 bits of this field are significant
(or used). Default = 00000000.

VSBC2 Master Address Offset #4 00000000 Address offset for the local bus
to VSB map decoder #4. The
upper 16 bits of this field will be
added to the upper 16 bits of the
local bus address received. This
sum is then the address driven
onto the VSB address lines.
Default = 00000000.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

Configure and Environment Commands

A-16 MVME166 Single Board Computer Installation Guide

A

VSBC2 Master Attributes #4 0030 The bits in this register control
various aspects of how the local
bus to VSB map decoder #4 will
operate. Consult the VSBchip2
register definition in the
MVME166 programmer’s
reference guide for a detailed
explanation of each bit. Default
= 0030.

Table A-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default

MVME166IG/D2B-1

BDISK/TAPE CONTROLLER
DATA

Disk/Tape Controller Modules Supported
The following VMEbus disk/tape controller modules are supported by the
166Bug. The default address for each controller type is First Address and the
controller can be addressed by First CLUN during commands BH, BO, or IOP,
or during TRAP #15 calls .DSKRD or .DSKWR. Note that if another controller
of the same type is used, the second one must have its address changed by its
onboard jumpers and/or switches, so that it matches Second Address and can
be called up by Second CLUN.

Controller Type
First

CLUN
First

Address
Second
CLUN

Second
Address

CISC Single Board Computer (SBC) $00 (NOTE 1) -- -- --

MVME320 - Winchester/Floppy Controller $11 (NOTE 2) $FFFFB000 $12 (NOTE 2) $FFFFAC00

MVME323 - ESDI Winchester Controller $08 $FFFFA000 $09 $FFFFA200

MVME327A - SCSI Controller $02 $FFFFA600 $03 $FFFFA700

MVME328 - SCSI Controller $06 $FFFF9000 $07 $FFFF9800

MVME328 - SCSI Controller $16 $FFFF4800 $17 $FFFF5800

MVME328 - SCSI Controller $18 $FFFF7000 $19 $FFFF7800

MVME350 - Streaming Tape Controller $04 $FFFF5000 $05 $FFFF5100

NOTES: (1) If the SBC (e.g., an MVME166) SCSI port is used, then the SBC module has CLUN 0.

(2) For SBCs, the first MVME320 has CLUN $11, and the second MVME320 has CLUN $12.

Disk/Tape Controller Data

B-2 MVME166 Single Board Computer Installation Guide

B Disk/Tape Controller Default Configurations

CISC Single Board Computers -- 7 Devices

MVME320 -- 4 Devices

NOTE: SCSI Common Command Set (CCS) devices are only the ones tested by Motorola
Computer Group.

Controller LUN Address Device LUN Device Type

0 $XXXXXXXX 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable flexible direct access

(TEAC style)
- CD-ROM
- Sequential access

Controller LUN Address Device LUN Device Type

11 $FFFFB000 0
1
2
3

Winchester hard drive
Winchester hard drive
5-1/4" DS/DD 96 TPI floppy drive12 $FFFFAC00
5-1/4" DS/DD 96 TPI floppy drive

Disk/Tape Controller Default Configurations

MVME166IG/D2 B-3

B
MVME323 -- 4 Devices

MVME327A -- 9 Devices

Controller LUN Address Device LUN Device Type

8 $FFFFA000 0
1
2
3

ESDI Winchester hard drive
ESDI Winchester hard drive
ESDI Winchester hard drive9 $FFFFA200
ESDI Winchester hard drive

Controller LUN Address Device LUN Device Type

2 $FFFFA600 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable flexible direct access

(TEAC style)
- CD-ROM
- Sequential access

3 $FFFFA700

80
81

Local floppy drive

Local floppy drive

Disk/Tape Controller Data

B-4 MVME166 Single Board Computer Installation Guide

B
MVME328 -- 14 Devices

MVME350 -- 1 Device

Controller LUN Address Device LUN Device Type

6 $FFFF9000 00
08
10
18
20
28
30

SCSI Common Command Set
(CCS), which may be any of these:

- Removable flexible direct access
(TEAC style)

- CD-ROM
- Sequential access

7 $FFFF9800

16 $FFFF4800

40
48
50
58
60
68
70

Same as above, but these
will only be available if
the daughter card for the
second SCSI channel is present.

17 $FFFF5800

18 $FFFF7000

19 $FFFF7800

Controller LUN Address Device LUN Device Type

4 $FFFF5000 0 QIC-02 streaming tape drive

5 $FFFF5100

IOT Command Parameters for Supported Floppy Types

MVME166IG/D2 B-5

BIOT Command Parameters for Supported Floppy Types
The following table lists the proper IOT command parameters for floppies
used with boards such as the MVME328, MVME166, and MVME187.

IOT Parameter

Floppy Types and Formats

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD

Sector Size
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 2 2 2 2 2 2

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 1 1 1 1 1 1

Sectors/Track 10 8 9 9 F 12 24

Number of Heads = 2 2 2 2 2 2 2

Number of Cylinders = 50 28 28 50 50 50 50

Precomp. Cylinder = 50 28 28 50 50 50 50

Reduced Write Current
Cylinder =

50 28 28 50 50 50 50

Step Rate Code = 0 0 0 0 0 0 0

Single/Double DATA
Density =

D D D D D D D

Single/Double TRACK
Density =

D D D D D D D

Single/Equal_in_all Track
Zero Density =

S E E E E E E

Slow/Fast Data Rate = S S S S F F F

Other Characteristics

Number of Physical Sectors 0A00 0280 02D0 05A0 0960 0B40 1680

Number of Logical Blocks
(100 in size)

09F8 0500 05A0 0B40 12C0 1680 2D00

Number of Bytes in Decimal 653312 327680 368460 737280 1228800 1474560 2949120

Media Size/Density 5.25/DD 5.25/DD 5.25/DD 3.5/DD 5.25/HD 3.5/HD 3.5/ED

NOTES: 1. All numerical parameters are in hexadecimal unless otherwise noted.

2. The DSDD5 type floppy is the default setting for the debugger.

Disk/Tape Controller Data

B-6 MVME166 Single Board Computer Installation Guide

B

MVME166IG/D2C-1

CNETWORK CONTROLLER
DATA

Network Controller Modules Supported
The following VMEbus network controller modules are supported by the
MVME166Bug. The default address for each type and position is showed to
indicate where the controller must reside to be supported by the
MVME166Bug. The controllers are accessed via the specified CLUN and
DLUNs listed here. The CLUN and DLUNs are used in conjunction with the
debugger commands NBH, NBO, NIOP, NIOC, NIOT, NPING, and NAB,
and also with the debugger system calls .NETRD, .NETWR, .NETFOPN,
.NETFRD, .NETCFIG, and .NETCTRL.

Controller
Type CLUN DLUN Address

Interface
Type

MVME166 $00 $00 $FFF46000 Ethernet

MVME376 $02 $00 $FFFF1200 Ethernet

MVME376 $03 $00 $FFFF1400 Ethernet

MVME376 $04 $00 $FFFF1600 Ethernet

MVME376 $05 $00 $FFFF5400 Ethernet

MVME376 $06 $00 $FFFF5600 Ethernet

MVME376 $07 $00 $FFFFA400 Ethernet

MVME374 $10 $00 $FF000000 Ethernet

MVME374 $11 $00 $FF100000 Ethernet

MVME374 $12 $00 $FF200000 Ethernet

MVME374 $13 $00 $FF300000 Ethernet

MVME374 $14 $00 $FF400000 Ethernet

MVME374 $15 $00 $FF500000 Ethernet

Network Controller Data

C-2 MVME166 Single Board Computer Installation Guide

C

MVME166IG/D2IN-1

Index

When using this index, keep in mind that a page number indicates only where
referenced material begins. It may extend to the page or pages following the page
referenced.

Numerics
166BBug (see BootBug) 1-10, 2-6
166BBug implementation 3-7
166Bug (see debug monitor and

MVME166Bug) 4-1
166Bug (see debug monitor and

MVME167bug) 2-2
166Bug debugger command set 4-20
166Bug generalized exception handler

4-15
166Bug implementation 3-3
166Bug stack 3-13
166Bug vector table and workspace 4-10
5-1/4 DS/DD 96 TPI floppy drive B-2
53C710 (SCSI Controller) 1-16
82596CA (see Ethernet and LAN) 1-15

A
abort 3-12
ABORT switch 1-9
address 4-2
address as a parameter 4-4
address formats 4-4
arguments 4-1
arithmetic operators 4-3
ASCII string 4-2
assembler/disassembler 4-9
assertion 1-7
autoboot 3-9

B
Backus-Naur 4-2
base and top addresses 4-6

base identifier 4-3
Battery Backed Up RAM (BBRAM) and

Clock (see MK48T08 and
NVRAM) 1-13, A-1

BBRAM (Battery Backed Up RAM) (see
MK48T08 and NVRAM) 1-13

BG (bus grant) 2-7
BH (Bootstrap and Halt) 3-17
binary number 1-6
block diagram 1-8
blocks versus sectors 3-15
BO (Bootstrap Operating System) 3-17
board level hardware description 1-1
boldface string 4-2
BootBug (see 166BBug) 1-10, 2-6, 3-7
BOOTP protocol module 3-20
Bootstrap and Halt (BH) 3-17
Bootstrap Operating System (BO) 3-17
braces 4-2
break 3-12
BREAK key 3-12
bus grant (BG) 2-7
byte 1-7

C
C programming language 3-3
cable(s) 2-7
calling system utilities from user pro-

grams 4-9
CCS (SCSI Common Command Set) B-2
CD2401 Serial Controller Chip (SCC)

1-13, 3-6
checksum A-2

Index

IN-2 MVME166 Sngle Board Computer Installation Guide

I
N
D
E
X

CISC Single Board Computer(s) (SBC)
B-1

Clear To Send (CTS) 3-6
CLUN (controller LUN) B-2, C-1
command identifier 4-1
command line 4-1
configuration, default disk/tape control-

ler B-2
configuration, hardware 3-4
Configure (CNFG) and Environment

(ENV) commands A-1
Configure Board Information Block (CN-

FG) A-1
connector J9 4-8
connectors 1-17
console port 4-8
control bit 1-7
controller B-1
controller LUN (CLUN) B-2, C-1
count 4-2
creating a new vector table 4-13
CTS (Clear To Send) 3-6

D
data bus structure 1-10
debug monitor (see 166Bug and

MVME167Bug) 2-2
debug port 4-8
debugger address parameter formats 4-5
debugger commands 4-20
debugger general information 3-1
debugger prompt 4-1
decimal number 1-6
default 166Bug controller and device pa-

rameters 3-18
default baud rate 3-6
delimiter 4-2
description of 166Bug 3-1
device LUN (DLUN) B-2, C-1
device probe function 3-16
diagnostic facilities 3-23
direct access device B-2, B-4

disk I/O error codes 3-19
disk I/O support 3-15
disk I/O via 166Bug commands 3-16
disk I/O via 166Bug system calls 3-17
disk/tape controller data B-1
disk/tape controller default configura-

tions B-2
disk/tape controller modules supported

B-1
DLUN (device LUN) B-2, C-1
double precision real 4-18
download 4-9
download EPROM 1-19
DRAM (dynamic RAM) 1-12
DRAM base address 2-8
dynamic RAM (DRAM) 1-12

E
EIA-232-D 1-14
EIA-232-D port(s) 3-6, 4-10
entering and debugging programs 4-9
entering debugger command lines 4-1
ENV command parameters A-3
Environment (ENV) and Configure (CN-

FG) commands A-1
EPROM (see also download EPROM) 2-6
ESDI Winchester hard drive B-3
Ethernet (see 82596CA and LAN) C-1
Ethernet interface 1-15
Ethernet station address 1-16
exception vectors used by 166Bug 4-11
Execute User Program (EXEC) 3-8
exponent field 4-17
expression 4-2
expression as a parameter 4-3
extended addressing 2-8
extended precision real 4-18

F
false 1-7
features 1-5
Flash memory 1-10

MVME166IG/D2 IN-3

I
N
D
E
X

Flash memory and download EPROM
1-10

flexible diskette B-2
floating point instructions 4-17
floating point support 4-17
floating point unit (FPU) 4-17, 4-19
floppy disk command parameters B-5
floppy diskette B-4
floppy drive B-2, B-3
four-byte 1-7
FPU (floating point unit) 4-17, 4-19
front panel switches and indicators 1-9
functional description 1-9
fuse F2 2-9
fuses F1, F3, and F4 2-9

G
GCSR (Global Control and Status Regis-

ters) 2-9, 3-23
GCSR GPCSR0 A-6
GCSR method 3-23
general purpose readable jumpers on

header J3 2-4
global bus timeout 2-8
Global Control and Status Registers (GC-

SR) 2-9, 3-23

H
handshaking 3-6
hard disk drive B-3
hardware functions 4-10
hardware interrupts 1-17
hardware preparation 2-1
hardware preparation and installation

2-1
headers 3-4
hexadecimal character 1-6
host port 4-8
host system 4-9

I
I/O interfaces 1-13

IACK (interrupt acknowledge) 2-7
indicators 1-9
installation 3-3
installation and startup 3-3
installation instructions 2-6
Intel 82596 LAN Coprocessor Ethernet

driver 3-19
interrupt acknowledge (IACK) 2-7
Interrupt Stack Pointer (ISP) 3-13
interrupt(s) 1-17
introduction 1-1, 2-1
IOC (I/O Control) 3-17
IOI (Input/Output Inquiry) 3-16
IOP (Physical I/O to Disk) 3-16
IOT (I/O Teach) 3-16
IOT command parameters for supported

floppy types B-5
ISP (Interrupt Stack Pointer) 3-13
italic strings 4-2

J
J2 2-2
J3 2-4
J6 2-4
J7 2-5
J9 4-8
jumpers 3-4

L
LAN (local area network) (see 82596CA

and Ethernet) 1-15
LCSR (Local Control and Status Registers

(see VMEchip2 LCSR) 2-4
LEDs 1-9
local bus 1-17
local bus memory map 1-18, 1-19
local bus timeout 1-17
local floppy drive B-3
local I/O devices memory map 1-20
local resources 1-16
location monitors 2-9
longword 1-7

Index

IN-4 MVME166 Sngle Board Computer Installation Guide

I
N
D
E
X

M
mantissa field 4-17
manual terminology 1-6
MC68040 MPU 1-10
MC68040 TRAP instructions 4-9
MC68230 Parallel Interface/Timer (PIT)

1-14
memory maps 1-18

local bus 1-18
local I/O devices 1-20
VMEbus 1-22
VMEbus short I/O 1-22
VSB 1-22

memory requirements 3-13
metasymbols 4-2
MK48T08 (see Battery Backed Up RAM,

BBRAM, and NVRAM) 1-13
MPAR (Multiprocessor Address Regis-

ter) 3-22
MPCR (Multiprocessor Control Register)

method 3-21
MPU clock speed calculation 3-13
Multiprocessor Address Register

(MPAR) 3-22
Multiprocessor Control Register (MPCR)

method 3-21
multiprocessor support 3-21
MVME166 1-1, C-1
MVME166 block diagram 1-8
MVME166 module installation 2-6
MVME166 specifications 1-6
MVME166 switches, headers, connec-

tors, fuses, and LEDs 2-3
MVME167Bug debugging package (see

166Bug and debug monitor) 1-2,
2-2

MVME320 - Winchester/Floppy Con-
troller B-1

MVME323 - ESDI Winchester Controller
B-1, B-3

MVME327A - SCSI Controller B-1, B-3
MVME328 - SCSI Controller B-1, B-4

MVME350 - Streaming Tape Controller
B-1, B-4

MVME374 C-1
MVME376 C-1
MVME712-06/07/09 1-1
MVME712-10 1-1

N
negation 1-7
network boot 3-10
network boot control module 3-20
network controller data C-1
network controller modules supported

C-1
network I/O error codes 3-20
network I/O support 3-19
Non-Volatile RAM (NVRAM) (see Bat-

tery Backed Up RAM, BBRAM
and MK48T08) A-1

normal address range 1-18
numeric value 4-3
NVRAM (Non-Volatile RAM) (see Bat-

tery Backed Up RAM, BBRAM,
and MK48T08) 1-13, A-1

O
object code 4-9
offset registers 4-6
onboard DRAM 1-12
operating environment 4-9
operational parameters A-2
option field 4-1
overview 1-1
overview of M68000 firmware 3-1

P
P1 1-17
P2 1-17
packed decimal real 4-19
parallel port interface 1-15
parameters (see default 166Bug control-

ler and device parameters) 3-18

MVME166IG/D2 IN-5

I
N
D
E
X

PIT (MC68230 Parallel Interface/Timer)
1-14

port 0 or 00 4-8
port 1 or 01 4-8
port number(s) 4-1, 4-8
preserving the debugger operating envi-

ronment 4-9
programmable tick timers 1-17
pseudo-registers 4-6

Q
QIC-02 streaming tape drive B-4

R
range 4-2
RARP/ARP protocol modules 3-20
related documentation 1-2
relative address+offset 4-6
requirements 1-5
reset 3-11
RESET switch 1-9
restarting the system 3-11
RFI 2-7
ROMboot 3-10

S
SBC (see CISC Single Board Comput-

er(s)) B-1
SCC (Sereial Controller Chip) (see

CD2401) 1-13
scientific notation 4-19
SCSI Common Command Set (CCS) B-2,

B-4
SCSI Controller (53C710) 1-16
SCSI interface 1-16
SCSI specification 1-4
SCSI termination 1-16
SCSI terminator enable header J2 2-2
SCSI terminator power 2-9
sequential access device B-2, B-4
Serial Controller Chip (SCC) (see

CD2401) 1-13

serial port 1 4-8
serial port 2 4-8
serial port interface 1-13
Set Environment to Bug/Operating Sys-

tem (ENV) A-2
Setup System Parameters (SETUP) 3-8
sign field 4-17
Single Board Computer (SBC) (see CISC

Single Board Computer(s)) B-1
single precision real 4-18
software-programmable hardware inter-

rupts 1-17
source line 4-9
specifications 1-6
square brackets 4-2
SRAM (static RAM) 1-11
SRAM backup power source select head-

er J7 2-5
S-record format 4-9
start-up 3-3
static RAM (SRAM) 1-11
static variable space 3-13
status bit 1-7
streaming tape drive (see QIC-2 stream-

ing tape drive) B-4
string literal 4-3
switches 1-9
syntactic variables 4-2
SYSFAIL* assertion/negation 3-12
system calls (see disk I/O via 166Bug

system calls) 3-17
system considerations 2-8
system console 3-6
system controller 2-4
system controller function 3-5
system controller header J6 2-4
System Fail (SYSFAIL*) 3-10

T
target vector table (see using 166Bug tar-

get vector table) 4-12
terminal input/output control 3-14

Index

IN-6 MVME166 Sngle Board Computer Installation Guide

I
N
D
E
X

TFTP protocol module 3-20
tick timers 1-16
timeout 1-17
transfer type (TT) 1-18
TRAP #15 4-9
true 1-7
TT (transfer type) 1-18
TTL 1-14
two-byte 1-7

U
UDP/IP protocol modules 3-19
unpacking instructions 2-1
using 166Bug target vector table 4-12
using the 166Bug debugger 4-1

V
V.35 1-14
vector table 4-10
vertical bar 4-2
VME Subsystem Bus (VSB) interface 1-13
VMEbus accesses to the local bus 1-22
VMEbus interface 1-13
VMEbus memory map 1-22
VMEbus short I/O memory map 1-22
VMEbus specification 1-4
VMEchip2 LCSR (Local Control and Sta-

tus Registers) 2-4
VSB interface 1-13
VSB memory map 1-22
VSB specification 1-4

W
watchdog timer 1-17
Winchester hard drive B-2, B-3
word 1-7

X
XON/XOFF 3-6

	BOARD LEVEL HARDWARE DESCRIPTION
	Introduction
	Overview
	Related Documentation
	Requirements
	Features
	Specifications
	Manual Terminology

	Block Diagram
	Functional Description
	Front Panel Switches and Indicators
	Data Bus Structure
	MC68040 MPU
	Flash Memory and Download EPROM
	SRAM
	Onboard DRAM
	Battery Backed Up RAM and Clock
	VMEbus Interface
	VME Subsystem Bus (VSB) Interface
	I/O Interfaces
	Serial Port Interface
	MC68230 Parallel Interface/Timer
	Parallel Port Interface
	Ethernet Interface
	SCSI Interface
	SCSI Termination

	Local Resources
	Programmable Tick Timers
	Watchdog Timer
	Software-Programmable Hardware Interrupts
	Local Bus Timeout

	Connectors

	Memory Maps
	Local Bus Memory Map
	Normal Address Range

	VMEbus Memory Map
	VMEbus Accesses to the Local Bus
	VMEbus Short I/O Memory Map

	VSB Memory Map

	HARDWARE PREPARATION AND INSTALLATION
	Introduction
	Unpacking Instructions
	Hardware Preparation
	SCSI Terminator Enable Header J2
	General Purpose Readable Jumpers on Header J3
	System Controller Header J6
	SRAM Backup Power Source Select Header J7

	Installation Instructions
	MVME166 Module Installation
	System Considerations

	DEBUGGER GENERAL INFORMATION
	Overview of M68000 Firmware
	Description of 166Bug
	166Bug Implementation
	Installation and Startup
	BOOTBUG
	166BBug Implementation
	Execute User Program
	Setup System Parameters

	Autoboot
	ROMboot
	Network Boot
	Restarting the System
	Reset
	Abort
	Break
	SYSFAIL* Assertion/Negation
	MPU Clock Speed Calculation

	Memory Requirements
	Terminal Input/Output Control
	Disk I/O Support
	Blocks Versus Sectors
	Device Probe Function
	Disk I/O via 166Bug Commands
	IOI (Input/Output Inquiry)
	IOP (Physical I/O to Disk)
	IOT (I/O Teach)
	IOC (I/O Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)

	Disk I/O via 166Bug System Calls
	Default 166Bug Controller and Device Parameters
	Disk I/O Error Codes

	Network I/O Support
	Intel 82596 LAN Coprocessor Ethernet Driver
	UDP/IP Protocol Modules
	RARP/ARP Protocol Modules
	BOOTP Protocol Module
	TFTP Protocol Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support
	Multiprocessor Control Register (MPCR) Method
	GCSR Method

	Diagnostic Facilities
	USING THE 166Bug DEBUGGER
	Entering Debugger Command Lines
	Syntactic Variables
	Expression as a Parameter
	Address as a Parameter
	Address Formats
	Offset Registers

	Port Numbers

	Entering and Debugging Programs
	Calling System Utilities from User Programs
	Preserving the Debugger Operating Environment
	166Bug Vector Table and Workspace
	Hardware Functions
	Exception Vectors Used by 166Bug
	Using 166Bug Target Vector Table
	Creating a New Vector Table
	166Bug Generalized Exception Handler

	Floating Point Support
	Single Precision Real
	Double Precision Real
	Extended Precision Real
	Packed Decimal Real
	Scientific Notation

	The 166Bug Debugger Command Set
	CONFIGURE AND ENVIRONMENT COMMANDS
	Configure Board Information Block
	Set Environment to Bug/Operating System
	DISK/TAPE CONTROLLER DATA
	Disk/Tape Controller Modules Supported
	Disk/Tape Controller Default Configurations
	IOT Command Parameters for Supported Floppy Types
	NETWORK CONTROLLER DATA
	Network Controller Modules Supported

